Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 96(1): 191-8, 1983 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-6826647

RESUMO

We investigated the capacity of a clonal osteogenic cell line MC3T3-E1, established from newborn mouse calvaria and selected on the basis of high alkaline phosphatase (ALP) activity in the confluent state, to differentiate into osteoblasts and mineralize in vitro. The cells in the growing state showed a fibroblastic morphology and grew to form multiple layers. On day 21, clusters of cells exhibiting typical osteoblastic morphology were found in osmiophilic nodular regions. Such nodules increased in number and size with incubation time and became easily identifiable with the naked eye by day 40-50. In the central part of well-developed nodules, osteocytes were embedded in heavily mineralized bone matrix. Osteoblasts were arranged at the periphery of the bone spicules and were surrounded by lysosome-rich cells and a fibroblastic cell layer. Numerous matrix vesicles were scattered around the osteoblasts and young osteocytes. Matrix vesicles and plasma membranes of osteoblasts, young osteocytes, and lysosome-rich cells showed strong reaction to cytochemical stainings for ALP activity and calcium ions. Minerals were initially localized in the matrix vesicles and then deposited on well-banded collagen fibrils. Deposited minerals consisted exclusively of calcium and phosphorus, and some of the crystals had matured into hydroxyapatite crystals. These results indicate that MC3T3-E1 cells have the capacity to differentiate into osteoblasts and osteocytes and to form calcified bone tissue in vitro.


Assuntos
Calcificação Fisiológica , Linhagem Celular , Osteoblastos/citologia , Osteogênese , Fosfatase Alcalina/metabolismo , Animais , Cálcio/análise , Diferenciação Celular , Células Clonais , Cristalização , Lisossomos/ultraestrutura , Camundongos , Organoides/ultraestrutura , Osteócitos/citologia , Fósforo/análise , Crânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA