Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Res ; 125: 16-26, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432179

RESUMO

Depression and anxiety disorders are among the most common mental health disorders that affect US adults today, frequently related to vitamin D (VD) insufficiency. Along with VD, growing evidence suggests gut microbiota likely play a role in neuropsychiatric disorders. Here, we investigated if modulation of gut microbiota would disrupt host VD status and promote behaviors related to depression and anxiety in adult mice. Six-week-old male and female C57BL/6J mice (n = 10/mice/group) were randomly assigned to receive (1) control diet (CTR), control diet treated with antibiotics (AB), control diet with total 5000 IU of VD (VD), VD treated with antibiotics (VD + AB), VD supplemented with 5% w/w fructooligosaccharides (FOS; VF), and VF diet treated with antibiotics (VF + AB), respectively, for 8 weeks. Our study demonstrated that VD status was not affected by antibiotic regimen. VD alone ameliorates anxiety-related behavior in female mice, and that combination with FOS (i.e., VF) did not further improve the outcome. Male mice, in contrast, exhibit greater anxiety with VF, but not VD, when compared with CTR mice. Colonic VD receptor was elevated in VF-treated mice in both sexes, compared with CTR, which was positively correlated to colonic TPH1, a rate-limiting enzyme for serotonin synthesis. Taken together, our data indicate that the effect of VF on anxiety-related behavior is sex-specific, which may partially be attributed to the activation of colonic VD signaling and subsequent serotonin synthesis. The synergistic or additive effect of VD and FOS on mood disorders remained to be investigated.


Assuntos
Ansiedade , Comportamento Animal , Colecalciferol , Colo , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oligossacarídeos , Receptores de Calcitriol , Animais , Oligossacarídeos/farmacologia , Masculino , Feminino , Ansiedade/tratamento farmacológico , Receptores de Calcitriol/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Colo/metabolismo , Colo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Colecalciferol/farmacologia , Camundongos , Regulação para Cima , Fatores Sexuais , Suplementos Nutricionais , Antibacterianos/farmacologia , Depressão/tratamento farmacológico
2.
Nutr Neurosci ; 27(3): 262-270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36877601

RESUMO

BACKGROUND: Prevalence of mental health disorders continue to increase worldwide. Over the past decades, suboptimal vitamin D (VD) levels and gut dysbiosis have been associated with neurological dysfunction and psychiatric disorders. METHODS: In this review, we examined the available literature on VD and mental health disorders, particularly depression and anxiety, in both clinical and pre-clinical studies. RESULTS: Our extensive review failed to find a link between VD deficiency, depression, and anxiety-related behavior in preclinical animal models. However, strong evidence suggests that VD supplementation may alleviate symptoms in chronically stressed rodents, with some promising evidence from clinical studies. Further, fecal microbiota transplantations suggest a potential role of gut microbiota in neuropsychiatric disorders, although the underlying mechanisms remain to be fully elucidated. It has been postulated that serotonin, primarily produced by gut bacteria, may be a crucial factor. Hence, whether VD has the ability to impact gut microbiota and modulate serotonin synthesis warrants further investigation. CONCLUSIONS: Taken together, literature has suggested that VD may serve as a key regulator in the gut-brain axis to modulate gut microbiota and alleviate symptoms of depression and anxiety. The inconsistent results of VD supplementation in clinical studies, particularly among VD deficient participants, suggests that current intake recommendations may need to be re-evaluated for individuals at-risk (i.e. prior to diagnosis) of developing depression and/or anxiety.


Assuntos
Depressão , Vitamina D , Animais , Humanos , Depressão/microbiologia , Vitamina D/uso terapêutico , Serotonina , Transtornos de Ansiedade/tratamento farmacológico , Ansiedade , Vitaminas
3.
Metabolites ; 12(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557290

RESUMO

A Western-style diet that is high in fat and sucrose has been shown to alter DNA methylation and epigenetically modify genes related to health risk in offspring. Here, we investigated the effect of a methyl-donor nutrient (MS) supplemented to a high-fat, high-sucrose (HFS) diet during pregnancy and lactation on vitamin D (VD) status and inflammatory response in offspring. After mating, 10-week-old female Sprague-Dawley (SD) rats (n = 10/group) were randomly assigned to one of the four dietary groups during pregnancy and lactation: (1) control diet (CON), (2) CON with MS (CON-MS), (3) HFS, and (4) HFS with MS (HFS-MS). Weanling offspring (three weeks old) were euthanized and sacrificed (n = 8-10/sex/group). The remaining offspring (n = 10/sex/group) were randomly assigned to either a CON or an HFS diet for 12 weeks and sacrificed at 15 weeks of age. Our results indicated that prenatal MS supplementation, but not postnatal diet, restored low vitamin D status and suppressed elevation of proinflammatory cytokine induced by maternal HFS in the offspring. Furthermore, both prenatal and postnatal diets modulated the abundance of Lactobacillus spp. and Bacteroides spp. in the offspring, a shift that was independent of vitamin D status. Collectively, our data support a role for MS in restoring the perturbation of VD status and normalizing maternal HFS-induced inflammation in the offspring. Further investigation is warranted to elucidate the methylation status of VD metabolism-related pathways in the offspring, as well as the immunomodulatory role of vitamin D during the progression of obesity.

4.
J Nutr ; 151(12): 3678-3688, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590119

RESUMO

BACKGROUND: Obesity increases the colorectal cancer risk, in part by elevating colonic proinflammatory cytokines. Curcumin (CUR) and supplemental vitamin B-6 each suppress colonic inflammation. OBJECTIVES: We examined whether the combination of CUR and vitamin B-6 amplifies each supplement's effects and thereby suppress obesity-promoted tumorigenesis. METHODS: Male Friend Virus B (FVB) mice (4-week-old; n = 110) received 6 weekly injections of azoxymethane beginning 1 week after arrival. Thereafter, they were randomized to receive a low-fat diet (10% energy from fat), a high-fat diet (HFD; 60% energy from fat), a HFD containing 0.2% CUR, a HFD containing supplemental vitamin B-6 (24 mg pyridoxine HCl/kg), or a HFD containing both CUR and supplemental vitamin B-6 (C + B) for 15 weeks. Colonic inflammation, assessed by fecal calprotectin, and tumor metrics were the primary endpoints. The anti-inflammatory efficacy of the combination was also determined in human colonic organoids. RESULTS: HFD-induced obesity produced a 2.6-fold increase in plasma IL-6 (P < 0.02), a 1.9-fold increase in fecal calprotectin (P < 0.05), and a 2.2-fold increase in tumor multiplicity (P < 0.05). Compared to the HFD group, the C + B combination, but not the individual agents, decreased fecal calprotectin (66%; P < 0.01) and reduced tumor multiplicity and the total tumor burden by 60%-80% (P < 0.03) in an additive fashion. The combination of C + B also significantly downregulated colonic phosphatidylinositol-4,5-bisphosphate 3-kinase, Wnt, and NF-κB signaling by 31%-47% (P < 0.05), effects largely absent with the single agents. Observations that may explain how the 2 agents work additively include a 2.8-fold increased colonic concentration of 3-hydroxyanthranillic acid (P < 0.05) and a 1.3-fold higher colonic concentration of the active coenzymatic form of vitamin B-6 (P < 0.05). In human colonic organoids, micromolar concentrations of CUR, vitamin B-6, and their combination suppressed secreted proinflammatory cytokines by 41%-93% (P < 0.03), demonstrating relevance to humans. CONCLUSIONS: In this mouse model, C + B is superior to either agent alone in preventing obesity-promoted colorectal carcinogenesis. Augmented suppression of procancerous signaling pathways may be the means by which this augmentation occurs.


Assuntos
Neoplasias Colorretais , Curcumina , Animais , Masculino , Camundongos , Carcinogênese , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/prevenção & controle , Curcumina/farmacologia , Dieta Hiperlipídica , Suplementos Nutricionais , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Piridoxina , Vitamina B 6/farmacologia , Vitaminas
5.
PLoS One ; 11(3): e0151579, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26968002

RESUMO

BACKGROUND: The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. OBJECTIVE: In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. METHODS: Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. RESULTS: No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. CONCLUSIONS: In this animal model, modulation of paternal B vitamin intake prior to mating alters offspring weight gain, lipid metabolism and tumor growth in a sex-specific fashion. These results highlight the need to better define how paternal nutrition affects the health of offspring.


Assuntos
Pai , Crescimento e Desenvolvimento/efeitos dos fármacos , Neoplasias Intestinais/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Peso Corporal/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/metabolismo , Masculino , Camundongos , Mutação , Reprodução/efeitos dos fármacos , Caracteres Sexuais , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Complexo Vitamínico B/sangue
6.
J Nutr ; 144(11): 1667-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165393

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is the leading cause of nephropathy in the United States. Renal complications of T2D include proteinuria and suboptimal serum 25-hydroxycholecalciferol (25D) concentrations. 25D is the major circulating form of vitamin D and renal reabsorption of the 25D-vitamin D-binding protein (DBP) complex via megalin-mediated endocytosis is believed to determine whether 25D can be activated to 1,25-dihydroxycholecalciferol (1,25D) or returned to circulation. We previously demonstrated that excessive urinary excretion of 25D-DBP and albuminuria occurred in rats with type 1 diabetes (T1D) and T2D. Moreover, feeding rats with T1D high-amylose maize partially resistant to digestion [resistant starch (RS)] prevented excretion of 25D-DBP without significantly affecting hyperglycemia. OBJECTIVE: We used Zucker diabetic fatty (ZDF) rats, a model of obesity-related T2D, to determine whether feeding RS could similarly prevent loss of vitamin D and maintain serum 25D concentrations. METHODS: Lean control Zucker rats (n = 8) were fed a standard semi-purified diet (AIN-93G) and ZDF rats were fed either the AIN-93G diet (n = 8) or the AIN-93G diet in which cornstarch was replaced with RS (550 g/kg diet; 35% resistant to digestion) (n = 8) for 6 wk. RESULTS: RS attenuated hyperglycemia by 41% (P < 0.01) and prevented urinary DBP excretion and albuminuria, which were elevated 3.0- (P < 0.01) and 3.6-fold (P < 0.01), respectively, in control diet-fed ZDF rats. Additionally, urinary excretion of 25D (P = 0.01) and 1,25D (P = 0.03) was higher (89% and 97%, respectively), whereas serum 25D concentrations were 31% lower (P < 0.001) in ZDF rats fed the control diet compared with RS-fed ZDF rats. Histopathologic scoring of the kidney revealed that RS attenuated diabetes-mediated damage by 21% (P = 0.12) despite an ∼50% decrease in megalin protein abundance. CONCLUSIONS: Taken together, these data provide evidence that suggests vitamin D balance can be maintained by dietary RS through nephroprotective actions in T2D, which are independent of vitamin D supplementation and renal expression of megalin.


Assuntos
Ração Animal/análise , Calcifediol/sangue , Vitamina D/metabolismo , Animais , Carboidratos da Dieta/administração & dosagem , Digestão , Regulação da Expressão Gênica/fisiologia , Rim/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Zucker , Vitamina D/urina , Zea mays/química , Zea mays/metabolismo
7.
J Agric Food Chem ; 59(1): 98-104, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21138267

RESUMO

Drinking an herbal tea to lose weight is a well-liked concept. This study was designed to examine the possible improvement of obesity phenotype by a new tea represented by its purified components, gallic acid, ellagic acid, and rubusoside (GER). Male obese-prone SD rats were given low-fat diet, high-fat diet, or high-fat diet plus GER at the dose of 0.22 g/kg of body weight for 9 weeks. GER significantly reduced body weight gain by 22% compared to the high-fat diet control group with 48% less abdominal fat gain. Food intake was not affected. Blood glucose was lowered in the GER-treated group, whereas serum triglycerides and cholesterol were significantly reduced by 50%. This improved obesity phenotype may be associated with the attenuated expression of vascular endothelial growth factor in preadipocyte 3T3-L1 cells. Although other underlying, possibly multiple, mechanisms behind the improved phenotype are largely unknown, the observed improvement of multiple obesity-related parameters by the new tea warrants further investigations.


Assuntos
Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Extratos Vegetais/administração & dosagem , Rosaceae/química , Células 3T3-L1 , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Fenótipo , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley
8.
J Agric Food Chem ; 57(11): 5000-6, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19419169

RESUMO

The aqueous extraction process of the leaves of Rubus suavissimus often brings in a large amount of nonactive polysaccharides as part of the constituents. To purify this water extract for potential elevated bioactivity, an alcohol precipitation (AP) consisting of gradient regimens was applied, and its resultants were examined through colorimetric and HPLC analyses. AP was effective in partitioning the aqueous crude extract into a soluble supernatant and an insoluble precipitant, and its effect varied significantly with alcohol regimens. Generally, the higher the alcohol concentration, the purer was the resultant extract. At its maximum, approximately 36% (w/w) of the crude extract, of which 23% was polysaccharides, was precipitated and removed, resulting in a purified extract consisting of over 20% bioactive marker compounds (gallic acid, ellagic acid, rutin, rubusoside, and steviol monoside). The removal of 11% polysaccharides from the crude water extract by using alcohol precipitation was complete at 70% alcohol regimen. Higher alcohol levels resulted in even purer extracts, possibly by removing some compounds of uncertain bioactivity. Alcohol precipitation is an effective way of removing polysaccharides from the water extract of the sweet tea plant and could be used as an initial simple purification tool for many water plant extracts that contain large amounts of polysaccharides.


Assuntos
Etanol/química , Precipitação Fracionada , Extratos Vegetais/isolamento & purificação , Rosaceae/química , Água/química , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA