Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(51): 20701-20712, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088361

RESUMO

Purple Pennisetum (Pennisetum purpureum Schumach), a hybrid between Taihucao No. 2 and the local wild species of purple Pennisetum, has dark red stems and leaves due to its anthocyanin content. This study explores the potential of purple napiergrass extracts (PNE) in alleviating obesity and metabolic disorders induced by a high-fat diet in mice, where 50% of the caloric content is derived from fat. Mice were orally administered low-dose or high-dose PNE alongside a high-fat diet. Experimental findings indicate that PNE attenuated weight gain, reduced liver, and adipose tissue weight, and lowered blood cholesterol, triglyceride, low-density lipoprotein, and blood sugar levels. Stained sections showed that PNE inhibited lipid accumulation and fat hypertrophy in the liver. Immunoblotting analysis suggested that PNE improved the inflammatory response associated with obesity, dyslipidemia, and hyperglycemia induced by a high-fat diet. Furthermore, PNE potentially functions as a PPAR-γ agonist, increasing the adiponectin (ADIPOQ) concentration and suppressing inflammatory factors, while elevating the anti-inflammatory factor interleukin-10 (IL-10) in the liver. PNE-treated mice showed enhanced activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and AMP-activated protein kinase (AMPK) pathways and increased fatty acid oxidation and liver lipolysis. In conclusion, this study elucidated the mechanisms underlying the anti-inflammatory, PI3K/Akt, and AMPK pathways in a high-fat diet-induced obesity model. These findings highlight the potential of PNE in reducing weight, inhibiting inflammation, and improving blood sugar and lipid levels, showing the potential for addressing obesity-related metabolic disorders in humans.


Assuntos
Doenças Metabólicas , Pennisetum , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pennisetum/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Glicemia/metabolismo , Extratos Vegetais/farmacologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Fígado/metabolismo , Triglicerídeos/metabolismo , Água/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Anti-Inflamatórios/metabolismo , Camundongos Endogâmicos C57BL
2.
Mol Nutr Food Res ; 67(5): e2200700, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36655510

RESUMO

SCOPE: Aging is a natural process characterized by a multifactorial, physical decline, and functional disability. Nevertheless, healthy aging can be achieved by following a multidirectional strategy. The current study aims to investigate the anti-aging potential of fermented black soybean and adlay (FBA). METHODS AND RESULTS: FBA supplements are incorporated into a natural aging mouse model that is designed to evaluate anti-aging effects. Results show that FBA supplementation prevents muscle loss and visceral adipose tissue accumulation. FBA can also reduce aging biomarkers (including the expression of hepatic p16INK4A and galactosidase beta-1 (GLB1). Hepatic 8-hydoxy-2'-deoxyguanosine (8-oxodG) and pro-inflammatory cytokines have been significantly reduced. Lastly, FBA supplementation improves aging-related gut microbial dysbiosis by reshaping gut microbial composition and promoting the growth of beneficial microbes such as Alistipes, Anaeroplasma, Coriobacteriaceae UCG002, and Parvibacter members in both genders of aged mice. In the functional prediction of gut microbiota, correlations to metabolic, neurodegenerative, infectious, and immune system diseases have been reduced in supplemented mice compared to aged mice. Moreover, FBA supplementation can reverse the reduced ability of microbiota in aged mice for lipid metabolism and xenobiotics biodegradation. CONCLUSIONS: The results suggest that FBA exhibits noteworthy anti-aging effects and that it can potentially be developed into a functional food for healthy aging.


Assuntos
Microbioma Gastrointestinal , Envelhecimento Saudável , Microbiota , Masculino , Feminino , Animais , Camundongos , Glycine max , Suplementos Nutricionais , Camundongos Endogâmicos C57BL
3.
Food Funct ; 11(9): 7545-7560, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32815965

RESUMO

NAFLD (non-alcoholic fatty liver disease) is a multifactorial liver disease related to multiple causes or unhealthy conditions, including obesity and chronic inflammation. The accumulation of excess triglycerides, called steatosis, is known as a hallmark of an imbalance between the rates of hepatic fatty acid uptake/synthesis and oxidation/export. Furthermore, occurrence of NAFLD may lead to a cocktail of disease consequences caused by the altered metabolism of glucose, lipids, and lipoproteins, for instance, insulin resistance, type II diabetes, nonalcoholic steatohepatitis (NASH), liver fibrosis, and even hepatocarcinogenesis. Due to the complexity of the occurrence of NAFLD, a multi-targeting strategy is highly recommended to effectively address the issue and combat the causal loop. Ethanol extracts of legumes are popular supplements due to their richness and diversity in phytochemicals, especially isoflavones and anthocyanins. Although many of them have been reported to have efficacy in the treatment of different metabolic syndromes and obesity, there have not been many studies on them as a supplemental mixture. In this study, the alleviative effects of selected legume ethanol extracts (CrE) on high-fat-diet- and fructose-induced obesity, liver steatosis, and hyperglycemia are discussed. As revealed by the findings, CrE not only ameliorated obesity in terms of weight gained and enlargement of adipose tissue, but also significantly reduced the incidence of steatosis via phosphorylation of AMPK, resulting in inhibition of the downstream SREBP-1c/FAS pathway and an increase in an indicator of ß-oxidation (carnitine palmitoyl transferase 1a, CPT1A). Furthermore, CrE dramatically alleviated inflammatory responses, including both plasma and hepatic TNF-α, IL-6, and MCP-1 levels. CrE also had attenuating effects on hyperglycemia and insulin resistance and significantly reduced the fasting glucose level, fasting insulin level, and plasma leptin, and it exhibited positive effects in the Oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). At the molecular level, CrE could activate the PI3K/Akt/Glut2 pathway, which indicated an increase in insulin sensitivity and glucose uptake. Taken together, these results suggest that ethanol extracts of legumes could be potential supplements for metabolic syndromes, and their efficacy and effectiveness might facilitate the multi-targeting strategy required to mitigate NAFLD.


Assuntos
Fabaceae/química , Frutose/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Suplementos Nutricionais/análise , Frutose/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/isolamento & purificação , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Mol Nutr Food Res ; 63(20): e1900514, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31368236

RESUMO

SCOPE: A gut-microbiota-dependent metabolite of L-carnitine, trimethylamine-N-oxide (TMAO), has been recently discovered as an independent and dose-dependent risk factor for cardiovascular disease (CVD). This study aims to investigate the effects of pterostilbene on reducing TMAO formation and on decreasing vascular inflammation in carnitine-feeding mice. METHODS AND RESULTS: C57BL/6 mice are treated with 1.3% carnitine in drinking water with or without pterostilbene supplementation. Using LC-MS/MS, the result shows that mice treated with 1.3% carnitine only significantly increased the plasma TMAO and pterostilbene supplementation group can reverse it. Additionally, pterostilbene decreases hepatic flavin monooxygenase 3 (FMO3) mRNA levels compared to carnitine only group. It appears that pterostilbene can alter host physiology and create an intestinal microenvironment favorable for certain gut microbiota. Gut microbiota analysis reveals that pterostilbene increases the abundance of Bacteroides. Further, pterostilbene decreases mRNA levels of vascular inflammatory markers tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin). CONCLUSION: These data suggest that amelioration of carnitine-induced vascular inflammation after consumption of pterostilbene is partially mediated via modulation of gut microbiota composition and hepatic enzyme FMO3 gene expression.


Assuntos
Microbioma Gastrointestinal/fisiologia , Metilaminas/metabolismo , Estilbenos/farmacologia , Vasculite/prevenção & controle , Animais , Carnitina/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Oxigenases/genética , Fator de Necrose Tumoral alfa/genética
5.
J Agric Food Chem ; 67(28): 7869-7879, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31287296

RESUMO

Carnitine, a dietary quaternary amine mainly from red meat, is metabolized to trimethylamine (TMA) by gut microbiota and subsequently oxidized to trimethylamine-N-oxide (TMAO) by host hepatic enzymes, flavin monooxygenases (FMOs). The objective of this study aims to investigate the effects of flavonoids from oolong tea and citrus peels on reducing TMAO formation and protecting vascular inflammation in carnitine-feeding mice. The results showed that mice treated with 1.3% carnitine in drinking water significantly (p < 0.05) increased the plasma levels of TMAO compared to control group, whereas the plasma TMAO was remarkedly reduced by flavonoids used. Meanwhile, these dietary phenolic compounds significantly (p < 0.05) decreased hepatic FMO3 mRNA levels compared to carnitine only group. Additionally, oolong tea extract decreased mRNA levels of vascular inflammatory markers such as tissue necrosis factor-alpha (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. Polymethoxyflavones significantly lowered the expression of VCAM-1 and showed a decreasing trend in TNF-α and E-selectin mRNA expression compared to the carnitine group. Genus-level analysis of the gut microbiota in the cecum showed that these dietary phenolic compounds induced an increase in the relative abundances of Bacteroides. Oolong tea extract-treated group up-regulated Lactobacillus genus, compared to the carnitine only group. Administration of polymethoxyflavones increased Akkermansia in mice.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Camellia sinensis/química , Carnitina/metabolismo , Citrus/química , Flavonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Aterosclerose/genética , Aterosclerose/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biotransformação/efeitos dos fármacos , Feminino , Flavonas/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/análise , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA