Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201486

RESUMO

Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopolymers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical, pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mucoromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate concentrations in the presence and absence of calcium). FT-Raman and FT-infrared (FTIR) spectroscopic data was assessed in respect to reference analyses of lipids, phosphorus, and carotenoids by using principal component analysis (PCA), multiblock or consensus PCA, partial least square regression (PLSR), and analysis of spectral variation due to different design factors by an ANOVA model. All main chemical biomass constituents were detected by FT-Raman spectroscopy, including lipids, proteins, cell wall carbohydrates, and polyphosphates, and carotenoids. FT-Raman spectra clearly show the effect of growth conditions on fungal biomass. PLSR models with high coefficients of determination (0.83-0.94) and low error (approximately 8%) for quantitative determination of total lipids, phosphates, and carotenoids were established. FT-Raman spectroscopy showed great potential for chemical analysis of biomass of oleaginous filamentous fungi. The study demonstrates that FT-Raman and FTIR spectroscopies provide complementary information on main fungal biomass constituents.


Assuntos
Fungos/química , Análise Espectral Raman/métodos , Biomassa , Biotecnologia , Cálcio/metabolismo , Carotenoides/análise , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Análise de Fourier , Fungos/crescimento & desenvolvimento , Lipídeos/análise , Espectroscopia de Ressonância Magnética , Fósforo/análise , Fósforo/metabolismo , Pigmentos Biológicos/análise , Análise de Componente Principal , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Appl Microbiol Biotechnol ; 104(18): 8065-8076, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32789746

RESUMO

Oleaginous filamentous fungi grown under the nitrogen limitation, accumulate high amounts of lipids in the form of triacylglycerides (TAGs) with fatty acid profiles similar to plant and fish oils. In this study, we investigate the effect of six phosphorus source concentrations combined with two types of nitrogen substrate (yeast extract and ammonium sulphate), on the biomass formation, lipid production, and fatty acid profile for nine oleaginous Mucoromycota fungi. The analysis of fatty acid profiles was performed by gas chromatography with flame ionization detector (GC-FID) and the lipid yield was estimated gravimetrically. Yeast extract could be used as both nitrogen and phosphorus source, without additional inorganic phosphorus supplementation. The use of inorganic nitrogen source (ammonium sulphate) requires strain-specific optimization of phosphorus source amount to obtain optimal lipid production regarding quantity and fatty acid profiles. Lipid production was decreased in ammonium sulphate-based media when phosphorus source was limited in all strains except for Rhizopus stolonifer. High phosphorus source concentration inhibited the growth of Mortierella fungi. The biomass (22 g/L) and lipid (14 g/L) yield of Umbelopsis vinacea was the highest among all the tested strains. KEY POINTS: • The strain specific P requirements of Mucoromycota depend on the nature of N source. • Yeast extract leads to consistent biomass and lipid yield and fatty acids profiles. • Umbelopsis vinacea showed the highest biomass (22 g/L) and lipid (14 g/L) yield. • High P source amounts inhibit the growth of Mortierella fungi.


Assuntos
Nitrogênio , Fósforo , Biomassa , Ácidos Graxos , Fungos , Lipídeos , Rhizopus
3.
Microorganisms ; 8(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668638

RESUMO

Beta (ß)-glucans are polysaccharides composed of D-glucose monomers. Nowadays, ß-glucans are gaining attention due to their attractive immunomodulatory biological activities, which can be utilized in pharmaceutical or food supplementation industries. Some carotenogenic Basidiomycetes yeasts, previously explored for lipid and carotenoid coproduction, could potentially coproduce a significant amount of ß-glucans. In the present study, we screened eleven Basidiomycetes for the coproduction of lipids and ß-glucans. We examined the effect of four different C/N ratios and eight different osmolarity conditions on the coproduction of lipids and ß-glucans. A high-throughput screening approach employing microcultivation in microtiter plates, Fourier Transform Infrared (FTIR) spectroscopy and reference analysis was utilized in the study. Yeast strains C. infirmominiatum CCY 17-18-4 and R. kratochvilovae CCY 20-2-26 were identified as the best coproducers of lipids and ß-glucans. In addition, C. infirmominiatum CCY 17-18-4, R. kratochvilovae CCY 20-2-26 and P. rhodozyma CCY 77-1-1 were identified as the best alternative producers of ß-glucans. Increased C/N ratio led to increased biomass, lipid and ß-glucans production for several yeast strains. Increased osmolarity had a negative effect on biomass and lipid production while the ß-glucan production was positively affected.

4.
PLoS One ; 15(6): e0234870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569317

RESUMO

Mucoromycota fungi possess a versatile metabolism and can utilize various substrates for production of industrially important products, such as lipids, chitin/chitosan, polyphosphates, pigments, alcohols and organic acids. However, as far as commercialisation is concerned, establishing industrial biotechnological processes based on Mucoromycota fungi is still challenging due to the high production costs compared to the final product value. Therefore, the development of co-production concept is highly desired since more than one valuable product could be produced at the time and the process has a potentially higher viability. To develop such biotechnological strategy, we applied a high throughput approach consisting of micro-titre cultivation and FTIR spectroscopy. This approach allows single-step biochemical fingerprinting of either fungal biomass or growth media without tedious extraction of metabolites. The influence of two types of nitrogen sources and different levels of inorganic phosphorus on the co-production of lipids, chitin/chitosan and polyphosphates for nine different oleaginous Mucoromycota fungi was evaluated. FTIR analysis of biochemical composition of Mucoromycota fungi and biomass yield showed that variation in inorganic phosphorus had higher effect when inorganic nitrogen source-ammonium sulphate-was used. It was observed that: (1) Umbelopsis vinacea reached almost double biomass yield compared to other strains when yeast extract was used as nitrogen source while phosphorus limitation had little effect on the biomass yield; (2) Mucor circinelloides, Rhizopus stolonifer, Amylomyces rouxii, Absidia glauca and Lichtheimia corymbifera overproduced chitin/chitosan under the low pH caused by the limitation of inorganic phosphorus; (3) Mucor circinelloides, Amylomyces rouxii, Rhizopus stolonifer and Absidia glauca were able to store polyphosphates in addition to lipids when high concentration of inorganic phosphorus was used; (4) the biomass and lipid yield of high-value lipid producers Mortierella alpina and Mortierella hyalina were significantly increased when high concentrations of inorganic phosphorus were combined with ammonium sulphate, while the same amount of inorganic phosphorus combined with yeast extract showed negative impact on the growth and lipid accumulation. FTIR spectroscopy revealed the co-production potential of several oleaginous Mucoromycota fungi forming lipids, chitin/chitosan and polyphosphates in a single cultivation process.


Assuntos
Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Quitina/biossíntese , Fungos , Lipídeos/biossíntese , Polifosfatos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Meios de Cultura , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo
5.
Anal Bioanal Chem ; 412(24): 6459-6474, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32350580

RESUMO

Fourier-transform infrared (FTIR) spectroscopy enables the chemical characterization and identification of pollen samples, leading to a wide range of applications, such as paleoecology and allergology. This is of particular interest in the identification of grass (Poaceae) species since they have pollen grains of very similar morphology. Unfortunately, the correct identification of FTIR microspectroscopy spectra of single pollen grains is hindered by strong spectral contributions from Mie scattering. Embedding of pollen samples in paraffin helps to retrieve infrared spectra without scattering artifacts. In this study, pollen samples from 10 different populations of five grass species (Anthoxanthum odoratum, Bromus inermis, Hordeum bulbosum, Lolium perenne, and Poa alpina) were embedded in paraffin, and their single grain spectra were obtained by FTIR microspectroscopy. Spectra were subjected to different preprocessing in order to suppress paraffin influence on spectral classification. It is shown that decomposition by non-negative matrix factorization (NMF) and extended multiplicative signal correction (EMSC) that utilizes a paraffin constituent spectrum, respectively, leads to good success rates for the classification of spectra with respect to species by a partial least square discriminant analysis (PLS-DA) model in full cross-validation for several species. PLS-DA, artificial neural network, and random forest classifiers were applied on the EMSC-corrected spectra using an independent validation to assign spectra from unknown populations to the species. Variation within and between species, together with the differences in classification results, is in agreement with the systematics within the Poaceae family. The results illustrate the great potential of FTIR microspectroscopy for automated classification and identification of grass pollen, possibly together with other, complementary methods for single pollen chemical characterization.


Assuntos
Poaceae/química , Pólen/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Discriminante , Análise dos Mínimos Quadrados , Aprendizado de Máquina
6.
Sci Rep ; 8(1): 16591, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409982

RESUMO

MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes.


Assuntos
Aclimatação , Poaceae/crescimento & desenvolvimento , Pólen/química , Análise Discriminante , Genótipo , Análise dos Mínimos Quadrados , Poaceae/química , Poaceae/classificação , Poaceae/genética , Pólen/classificação , Pólen/genética , Pólen/crescimento & desenvolvimento , Análise de Componente Principal , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
PLoS One ; 10(9): e0137899, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26376486

RESUMO

BACKGROUND: Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. METHODOLOGY: Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. RESULTS: The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of pollen. Out of the seven tested methodologies, the best taxonomical differentiation of pollen was obtained by infrared measurements on bulk samples, as well as by Raman microspectroscopy measurements of the corpus region of the pollen grain. Raman microspectroscopy measurements indicate that measurement area, as well as the depth of focus, can have crucial influence on the obtained data.


Assuntos
Alérgenos/química , Pinaceae/química , Pólen/química , Análise Espectral Raman/métodos , Alérgenos/classificação , Cedrus/química , Cedrus/classificação , Pinaceae/classificação , Pólen/classificação , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Planta ; 242(5): 1237-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26289829

RESUMO

MAIN CONCLUSION: Chemical imaging of pollen by vibrational microspectroscopy enables characterization of pollen ultrastructure, in particular phenylpropanoid components in grain wall for comparative study of extant and extinct plant species. A detailed characterization of conifer (Pinales) pollen by vibrational microspectroscopy is presented. The main problems that arise during vibrational measurements were scatter and saturation issues in Fourier transform infrared (FTIR), and fluorescence and penetration depth issues in Raman. Single pollen grains larger than approx. 15 µm can be measured by FTIR microspectroscopy using conventional light sources, while smaller grains may be measured by employing synchrotron light sources. Pollen grains that were larger than 50 µm were too thick for FTIR imaging since the grain constituents absorbed almost all infrared light. Chemical images of pollen were obtained on sectioned samples, unveiling the distribution and concentration of proteins, carbohydrates, sporopollenins and lipids within pollen substructures. The comparative analysis of pollen species revealed that, compared with other Pinales pollens, Cedrus atlantica has a higher relative amount of lipid nutrients, as well as different chemical composition of grain wall sporopollenin. The pre-processing and data analysis, namely extended multiplicative signal correction and principal component analysis, offer simple estimate of imaging spectral data and indirect estimation of physical properties of pollen. The vibrational microspectroscopy study demonstrates that detailed chemical characterization of pollen can be obtained by measurement of an individual grain and pollen ultrastructure. Measurement of phenylpropanoid components in pollen grain wall could be used, not only for the reconstruction of past environments, but for assessment of diversity of plant species as well. Therefore, analysis of extant and extinct pollen species by vibrational spectroscopies is suggested as a valuable tool in biology, ecology and palaeosciences.


Assuntos
Alérgenos/metabolismo , Pólen/metabolismo , Parede Celular/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
9.
PLoS One ; 10(4): e0124240, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25867755

RESUMO

BACKGROUND: Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens. METHODOLOGY: The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years. RESULTS: The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.


Assuntos
Alérgenos/química , Pólen/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Esporos Fúngicos/química , Poluentes Atmosféricos/química , Análise por Conglomerados , Fungos/classificação
10.
PLoS One ; 9(4): e95417, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748390

RESUMO

BACKGROUND: It is imperative to have reliable and timely methodologies for analysis and monitoring of seed plants in order to determine climate-related plant processes. Moreover, impact of environment on plant fitness is predominantly based on studies of female functions, while the contribution of male gametophytes is mostly ignored due to missing data on pollen quality. We explored the use of infrared spectroscopy of pollen for an inexpensive and rapid characterization of plants. METHODOLOGY: The study was based on measurement of pollen samples by two Fourier transform infrared techniques: single reflectance attenuated total reflectance and transmission measurement of sample pellets. The experimental set, with a total of 813 samples, included five pollination seasons and 300 different plant species belonging to all principal spermatophyte clades (conifers, monocotyledons, eudicots, and magnoliids). RESULTS: The spectroscopic-based methodology enables detection of phylogenetic variations, including the separation of confamiliar and congeneric species. Furthermore, the methodology enables measurement of phenotypic plasticity by the detection of inter-annual variations within the populations. The spectral differences related to environment and taxonomy are interpreted biochemically, specifically variations of pollen lipids, proteins, carbohydrates, and sporopollenins. The study shows large variations of absolute content of nutrients for congenital species pollinating in the same environmental conditions. Moreover, clear correlation between carbohydrate-to-protein ratio and pollination strategy has been detected. Infrared spectral database with respect to biochemical variation among the range of species, climate and biogeography will significantly improve comprehension of plant-environment interactions, including impact of global climate change on plant communities.


Assuntos
Plantas/classificação , Pólen/química , Espectrofotometria Infravermelho/métodos , Tempo (Meteorologia) , Especificidade da Espécie
11.
PLoS One ; 7(8): e42550, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952598

RESUMO

BACKGROUND: While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects. METHODOLOGY/PRINCIPAL FINDINGS: In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping. CONCLUSIONS/SIGNIFICANCE: In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated. TRIAL REGISTRATION: ClinicalTrials.gov NCT01034423.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Insaturados/sangue , Óleos de Peixe/farmacologia , Lipídeos/sangue , Fosfolipídeos/sangue , Triglicerídeos/sangue , Adolescente , Adulto , Índice de Massa Corporal , Cromatografia Líquida/métodos , Método Duplo-Cego , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Óleos de Plantas/farmacologia , Análise de Regressão , Projetos de Pesquisa , Óleo de Girassol
12.
Appl Spectrosc ; 64(7): 700-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20615281

RESUMO

In the present study a novel approach for Fourier transform infrared (FT-IR) characterization of the fatty acid composition of milk based on dried film measurements has been presented and compared to a standard FT-IR approach based on liquid milk measurements. Two hundred and sixty-two (262) milk samples were obtained from a feeding experiment, and the samples were measured with FT-IR as dried films as well as liquid samples. Calibrations against the most abundant fatty acids, CLA (i.e., 18:2cis-9, trans-11), 18:3cis-9, cis-12, cis-15, and summed fatty acid parameters were obtained for both approaches. The estimation errors obtained in the dried film calibrations were overall lower than the corresponding liquid sample calibrations. Similar and good calibrations (i.e., R(2) ranges from 0.82 to 0.94 (liquid samples) and from 0.88 to 0.97 (dried films)) for short-chain fatty acids (6:0-14:0), 18:1cis-9, SAT, MUFA, and iodine value were obtained by both approaches. However, the dried film approach was the only approach for which feasible calibrations (i.e., R(2) ranges from 0.78 to 0.93) were obtained for the major saturated fatty acids 16:0 and 18:0, the minor fatty acid features 4:0, CLA (i.e., 18:2cis-9, trans-11), PUFA, and the summed 18:1 trans isomers. For the dried film approach, logical spectral features were found to dominate the respective fatty acid calibration models. The preconcentration step of the dried film approach could be expected to account for a major part of the prediction improvements going from predictions in liquid milk to predictions in dried films. The dried film approach has a significant potential for use in high-throughput applications in industrial environments and might also serve as a valuable supplement for determination of genetic and breeding factors within research communities.


Assuntos
Ácidos Graxos/análise , Leite/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Calibragem , Bovinos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA