Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(10): 6903-6920, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37230877

RESUMO

The objective of this experiment was to investigate the effect of forage type [red clover (51%)-grass silage, i.e., RCG; vs. faba bean (66%)-grass silage, i.e., FBG] and concentrate type (faba bean, FB; vs. rapeseed expeller, RE) on lactational performance, milk composition and nitrogen (N) utilization in lactating dairy cows. Eight lactating multiparous Nordic Red cows were used in a replicated 4 × 4 Latin Square experiment, with 21-d periods, in a 2 × 2 factorial arrangement of treatments. The experimental treatments were as follows: (1) RCG with RE, (2) RCG with FB, (3) FBG with RE, and (4) FBG with FB. Inclusion rates of RE and FB were isonitrogenous. Crude protein contents of the experimental diets were 16.3, 15.9, 18.1, and 17.9% of dry matter, respectively. All diets included oats and barley and were fed ad libitum as total mixed rations with forage-to-concentrate ratio of 55:45. Dry matter intake and milk yield were recorded daily, and spot samples of urine, feces, and blood were collected at the end of each experimental period. Dry matter intake did not differ across diets, averaging 26.7 kg/d. Milk yield averaged 35.6 kg/d and was 1.1 kg/d greater for RCG versus FBG, and milk urea N concentration was lower for RCG compared with FBG. Milk yield was 2.2 kg/d and milk protein yield 66 g/d lower for FB versus RE. Nitrogen intake, urinary N, and urinary urea N excretions were lower, and milk N excretion tended to be lower for RCG compared with FBG. The proportion of the dietary N excreted as fecal N was larger in cows fed RCG than for those fed FBG, and the opposite was true for urinary N. We detected an interaction for milk N as percentage of N intake: it increased with RE compared with FB for RCG-based diet, but only a marginal increase was observed for FBG-based diet. Plasma concentration of His and Lys were lower for RCG than for FBG, whereas His tended to be greater and Lys lower for FB compared with RE. Further, plasma Met concentration was around 26% lower for FB than for RE. Of milk fatty acids, saturated fatty acids were decreased by RCG and increased by FB compared with FBG and RE, respectively, whereas monounsaturated fatty acids were increased by RCG versus FBG, and were lower for FB than for RE. In particular, 18:1n-9 concentration was lower for FB compared with RE. Polyunsaturated fatty acids, such as 18:2n-6 and 18:3n-3, were greater for RCG than for FBG, and 18:2n-6 was greater and 18:3n-3 was lower for FB versus RE. In addition, cis-9,trans-11 conjugated linoleic acid was lower for FB compared with RE. Faba bean whole-crop silage and faba bean meal have potential to be used as a part of dairy cow rations, but further research is needed to improve their N efficiency. Red clover-grass silage from a mixed sward, without inorganic N fertilizer input, combined with RE, resulted in the greatest N efficiency in the conditions of this experiment.


Assuntos
Brassica napus , Brassica rapa , Fabaceae , Trifolium , Vicia faba , Feminino , Bovinos , Animais , Silagem/análise , Vicia faba/metabolismo , Brassica napus/metabolismo , Lactação , Fabaceae/metabolismo , Aminoácidos/metabolismo , Digestão , Dieta/veterinária , Verduras/metabolismo , Ácidos Graxos/metabolismo , Avena/metabolismo , Trifolium/metabolismo , Aminas/metabolismo , Nitrogênio/metabolismo , Ureia/metabolismo
2.
J Dairy Sci ; 106(5): 3217-3232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028967

RESUMO

Fava bean offers a sustainable home-grown protein source for dairy cows, but fava bean protein is extensively degraded in the rumen and has low Met concentration. We studied the effects of protein supplementation and source on milk production, rumen fermentation, N use, and mammary AA utilization. The treatments were unsupplemented control diet, and isonitrogenously given rapeseed meal (RSM), processed (dehulled, flaked, and heated) fava bean without (TFB) or with rumen-protected (RP) Met (TFB+). All diets consisted of 50% grass silage and 50% cereal-based concentrate including studied protein supplement. The control diet had 15% of crude protein and protein-supplemented diets 18%. Rumen-protected Met in TFB+ corresponded to 15 g/d of Met absorbed in the small intestine. Experimental design was a replicated 4 × 4 Latin square with 3-wk periods. The experiment was conducted using 12 multiparous mid-lactation Nordic Red cows, of which 4 were rumen cannulated. Protein supplementation increased dry matter intake (DMI), and milk (31.9 vs. 30.7 kg/d) and milk component yields. Substituting RSM with TFB or TFB+ decreased DMI and AA intake but increased starch intake. There were no differences in milk yield or composition between RSM diet and TFB diets. Rumen-protected Met did not affect DMI, or milk or milk component yields but increased milk protein concentration in comparison to TFB. There were no differences in rumen fermentation except for increased ammonium-N concentration with the protein-supplemented diets. Nitrogen-use efficiency for milk production was lower for the supplemented diets versus control diet but tended to be greater for TFB and TFB+ versus RSM. Protein supplementation increased plasma essential AA concentration but there were no differences between TFB diets and RSM. Rumen-protected Met clearly increased plasma Met concentration (30.8 vs. 18.2 µmol/L) but did not affect other AA. Absence of differences between RSM and TFB in milk production together with limited effects of RP Met suggest that TFB is a potential alternative protein source for dairy cattle.


Assuntos
Brassica napus , Brassica rapa , Vicia faba , Feminino , Bovinos , Animais , Metionina , Poaceae/metabolismo , Brassica napus/metabolismo , Vicia faba/metabolismo , Silagem/análise , Rúmen/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Lactação , Racemetionina/metabolismo , Racemetionina/farmacologia
3.
J Dairy Sci ; 102(8): 7102-7117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155260

RESUMO

Alternative protein sources such as microalgae and faba beans may have environmental benefits over rapeseed. We studied the effects of rapeseed meal (RSM) or faba beans (FB) as a sole protein feed or as protein feeds partially substituted with Spirulina platensis (spirulina) microalgae on milk production, N utilization, and AA metabolism of dairy cows. Eight multiparous Finnish Ayrshire cows (113 ± 36.3 d in milk; mean ± SD) were used in a balanced, replicated 4 × 4 Latin square with 2 × 2 factorial arrangement of treatments and 21-d periods. Four cows in one Latin square were rumen cannulated. Treatments were 2 isonitrogenously fed protein sources, RSM or rolled FB, or one of these sources with half of its crude protein substituted by spirulina (RSM-SPI and FB-SPI). Cows had ad libitum access to total mixed rations consisting of grass silage, barley, sugar beet pulp, minerals, and experimental protein feed. The substitution of RSM with FB did not affect dry matter intake (DMI) but decreased neutral detergent fiber intake and increased the digestibility of other nutrients. Spirulina in the diet decreased DMI and His intake. Spirulina had no effect on Met intake in cows on RSM diets but increased it in those on FB diets. Energy-corrected milk (ECM) and protein yields were decreased when RSM was substituted by FB. Milk and lactose yields were decreased in cows on the RSM-SPI diet compared with the RSM diet but increased in those on FB-SPI compared with FB. The opposite was true for milk fat and protein concentrations; thus, spirulina in the diet did not affect ECM. Feed conversion efficiency (ECM:DMI) increased in cows on FB diets with spirulina, whereas little effect was observed for those on RSM diets. The substitution of RSM by FB decreased arterial concentration of Met and essential AA. Spirulina in the diet increased milk urea N and ruminal NH4-N and decreased the efficiency of N utilization in cows on RSM diets, whereas those on FB diets showed opposite results. Met likely limited milk production in cows on the FB diet as evidenced by the decrease in arterial Met concentration and milk protein yield when RSM was substituted by FB. The results suggest the potential to improve milk production response to faba beans with supplementation of Met-rich feeds such as spirulina. This study also confirmed spirulina had poorer palatability than RSM and FB despite total mixed ration feeding and lower milk production when spirulina partially replaced RSM.


Assuntos
Aminoácidos/metabolismo , Bovinos/fisiologia , Microalgas , Leite/metabolismo , Nitrogênio/metabolismo , Spirulina , Animais , Brassica rapa , Dieta/veterinária , Feminino , Lactação , Lactose/análise , Leite/efeitos dos fármacos , Proteínas do Leite/análise , Silagem/análise , Vicia faba
4.
J Dairy Sci ; 100(1): 305-324, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27865509

RESUMO

Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91d in milk) were used in replicated 4×4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5g/100g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45g/100g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8g/100g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.


Assuntos
Leite/metabolismo , Silagem , Animais , Bovinos , Dieta/veterinária , Ácidos Graxos/metabolismo , Feminino , Lactação/efeitos dos fármacos , Poaceae/metabolismo , Trifolium/metabolismo
5.
Physiol Genomics ; 46(9): 328-37, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24569674

RESUMO

Overfeeding during the dry period may predispose cows to increased insulin resistance (IR) with enhanced postpartum lipolysis. We studied gene expression in the liver and subcutaneous adipose tissue (SAT) of 16 Finnish Ayrshire dairy cows fed either a controlled energy diet [Con, 99 MJ/day metabolizable energy (ME)] during the last 6 wk of the dry period or high-energy diet (High, 141 MJ/day ME) for the first 3 wk and then gradually decreasing energy allowance during 3 wk to 99 MJ/day ME before the expected parturition. Tissue biopsies were collected at -10, 1, and 9 days, and blood samples at -10, 1, and 7 days relative to parturition. Overfed cows had greater dry matter, crude protein, and ME intakes and ME balance before parturition. Daily milk yield, live weight, and body condition score were not different between treatments. The High cows tended to have greater plasma insulin and lower glucagon/insulin ratio compared with Con cows. No differences in circulating glucose, glucagon, nonesterified fatty acids and ß-hydroxybutyrate concentrations, and hepatic triglyceride contents were observed between treatments. Overfeeding compared with Con resulted in lower CPT1A and PCK1 and a tendency for lower G6PC and PC expression in the liver. The High group tended to have lower RETN expression in SAT than Con. No other effects of overfeeding on the expression of genes related to IR in SAT were observed. In conclusion, overfeeding energy prepartum may have compromised hepatic gluconeogenic capacity and slightly affected IR in SAT based on gene expression.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Bovinos/fisiologia , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fígado/metabolismo , Período Periparto/fisiologia , Gordura Subcutânea/metabolismo , Adaptação Fisiológica/fisiologia , Análise de Variância , Animais , Teorema de Bayes , Primers do DNA/genética , DNA Complementar/genética , Dieta/veterinária , Ingestão de Alimentos/fisiologia , Feminino , Finlândia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
6.
J Dairy Sci ; 95(7): 3812-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22720937

RESUMO

Late pregnancy is associated with moderate insulin resistance in ruminants. Reduced suppression of lipolysis by insulin facilitates mobilization of nonesterified fatty acids (NEFA) from adipose tissue, resulting in elevated plasma NEFA concentrations. Decrease in dry matter intake (DMI) before parturition leads to accelerated lipomobilization and increases plasma NEFA, which may further impair insulin sensitivity. The aim of the study was to evaluate the effects of elevation of plasma NEFA concentration by abomasal infusions tallow (TAL) or camelina oil (CAM) on whole-body responses to exogenous glucose and insulin. We further assessed whether CAM, rich in C18:3n-3, enhances whole-body insulin sensitivity compared with TAL. Six late-pregnant, second-parity, rumen-cannulated dry Ayrshire dairy cows fed grass silage to meet 95% of metabolizable energy requirements were used in a replicated 3 × 3 Latin square with 5-d periods and 5 recovery days between each period. Treatments consisted of abomasal infusion of 500 mL/d (430 g of lipids/d) of water (control), TAL, or CAM administered in 10 equal doses daily. Intravenous glucose tolerance test (IVGTT) and i.v. insulin challenge (IC) were performed on d 5 after 98 and 108 h of treatment infusions, respectively. Infusion of lipids increased basal plasma NEFA concentrations on d 5 (CAM: 0.25; TAL: 0.28; control: 0.17 mmol/L). Following glucose injection, the rate of glucose clearance (CR) was lower in lipid-treated cows (CAM: 1.34; TAL: 1.48; control: 1.74%/min) and time to reach half-maximal glucose concentration (T(1/2)) was longer (CAM: 54; TAL: 47; control: 42 min). Similar responses were observed after insulin injection. Increased plasma NEFA concentration tended to decrease insulin secretion in IVGTT. Infusion of CAM increased plasma C18:3n-3 content (CAM: 26.4; TAL: 16.1; control: 20.9 g/100g of fatty acids). Data suggest that CAM had an insulin-sensitizing effect, because the disposition index and insulin sensitivity index, derived from minimal model analysis, were higher in CAM than in TAL during IVGTT, and lower insulin concentrations during IC led to similar glucose clearance in CAM as in TAL. These results indicate that elevated plasma NEFA concentration per se induces whole-body insulin resistance in late-pregnant dry cows.


Assuntos
Brassicaceae , Gorduras/farmacologia , Glucose/farmacologia , Resistência à Insulina , Óleos de Plantas/farmacologia , Abomaso , Animais , Glicemia/análise , Cateterismo/veterinária , Bovinos , Ácidos Graxos não Esterificados/sangue , Feminino , Teste de Tolerância a Glucose/veterinária , Gravidez
7.
J Dairy Sci ; 94(9): 4413-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21854915

RESUMO

Five multiparous Finnish Ayrshire cows fed red clover silage-based diets were used in a 5 × 5 Latin square with 21-d experimental periods to evaluate the effects of various plant oils or camelina expeller on animal performance and milk fatty acid composition. Treatments consisted of 5 concentrate supplements containing no additional lipid (control), or 29 g/kg of lipid from rapeseed oil (RO), sunflower-seed oil (SFO), camelina-seed oil (CO), or camelina expeller (CE). Cows were offered red clover silage ad libitum and 12kg/d of experimental concentrates. Treatments had no effect on silage or total dry matter intake, whole-tract digestibility coefficients, milk yield, or milk composition. Plant oils in the diet decreased short- and medium-chain saturated fatty acid (6:0-16:0) concentrations, including odd- and branched-chain fatty acids and enhanced milk fat 18:0 and 18-carbon unsaturated fatty acid content. Increases in the relative proportions of cis 18:1, trans 18:1, nonconjugated 18:2, conjugated linoleic acid (CLA), and polyunsaturated fatty acids in milk fat were dependent on the fatty acid composition of oils in the diet. Rapeseed oil in the diet was associated with the enrichment of trans 18:1 (Δ4, 6, 7, 8, and 9), cis-9 18:1, and trans-7,cis-9 CLA, SFO resulted in the highest concentrations of trans-5, trans-10, and trans-11 18:1, Δ9,11 CLA, Δ10,12 CLA, and 18:2n-6, whereas CO enhanced trans-13-16 18:1, Δ11,15 18:2, Δ12,15 18:2, cis-9,trans-13 18:2, Δ11,13 CLA, Δ12,14 CLA, Δ13,15 CLA, Δ9,11,15 18:3, and 18:3n-3. Relative to CO, CE resulted in lower 18:0 and cis-9 18:1 concentrations and higher proportions of trans-10 18:1, trans-11 18:1, cis-9,trans-11 CLA, cis-9,trans-13 18:2, and trans-11,cis-15 18:2. Comparison of milk fat composition responses to CO and CE suggest that the biohydrogenation of unsaturated 18-carbon fatty acids to 18:0 in the rumen was less complete for camelina lipid supplied as an expeller than as free oil. In conclusion, moderate amounts of plant oils in diets based on red clover silage had no adverse effects on silage dry matter intake, nutrient digestion, or milk production, but altered milk fat composition, with changes characterized as a decrease in saturated fatty acids, an increase in trans fatty acids, and enrichment of specific unsaturated fatty acids depending on the fatty acid composition of lipid supplements.


Assuntos
Ácidos Graxos/análise , Leite/química , Óleos de Plantas/farmacologia , Silagem , Trifolium , Animais , Brassicaceae , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Monoinsaturados , Feminino , Lactação/efeitos dos fármacos , Óleo de Brassica napus , Silagem/análise , Óleo de Girassol
8.
J Dairy Sci ; 88(3): 1127-41, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15738246

RESUMO

Twenty-four multiparous Ayrshire cows were used in an experiment to test the effect of body fatness and glucogenic supplement, fed during the transition period, on lipid and protein mobilization and plasma hormone concentrations. Eight weeks before their expected calving date, the cows were divided into blocks of 4. Two cows with the highest body condition score within each block were then allocated to a test (T) group and the other 2 cows to a control (C) group. To scale up the differences between fatter and thinner cows, the estimated energy allowance was 40% higher in group T than in group C between d 56 and 21 prepartum. For the final 3 wk before calving, all the cows were fed according to energy recommendations for pregnant cows. Within C and T groups and blocks, cows were randomly assigned into groups with (G1) or without (G0) glucogenic supplement. Division to G0 and G1 groups was made 2 wk before the expected calving and continued for 56 d postpartum. After calving, all the cows received grass silage ad libitum and a common daily concentrate allowance. No significant differences were detected in feed intake and milk yield between C and T. The T groups showed an earlier rise of nonesterified fatty acids as calving approached and had higher plasma nonesterified fatty acids during the final week of pregnancy and lactation wk 1 to 3. At the same time, adipose tissue samples from fatter cows tended to show higher in vitro lipolytic responses to added norepinephrine, as monitored by glycerol release. Protein mobilization was elevated during the final week of pregnancy and tended to be more increased in fatter cows. Glucogenic supplement did not decrease lipid or protein mobilization. Fatter cows had higher plasma leptin concentration prepartum, showed a more pronounced decrease in leptin concentration near calving, and had higher plasma leptin concentration after calving. In conclusion, fatter cows initiated more extensive mobilization of body fat before calving and this continued during the first lactation weeks. Plasma leptin concentration in early-lactation cows was associated with body fatness and not with estimated energy balance.


Assuntos
Tecido Adiposo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Composição Corporal/fisiologia , Bovinos/fisiologia , Metabolismo Energético/fisiologia , Leptina/sangue , Ração Animal , Animais , Glicemia/análise , Bovinos/sangue , Bovinos/metabolismo , Suplementos Nutricionais , Ingestão de Energia , Feminino , Insulina/metabolismo , Período Pós-Parto , Gravidez , Proteínas/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA