Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 11(4)2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916555

RESUMO

Biosynthesis of silver nanoparticles using beneficial Trichoderma harzianum is a simple, eco-friendly and cost-effective route. Secondary metabolites secreted by T. harzianum act as capping and reducing agents that can offer constancy and can contribute to biological activity. The present study aimed to synthesize silver nanoparticles using T. harzianum cell filtrate and investigate different bioactive metabolites based on LC-MS/MS analysis. The synthesized silver nanoparticles (AgNPs) from T. harzianum were characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectrometry (FT-IR), energy-dispersive spectroscopy (EDS), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The surface plasmon resonance of synthesized particles formed a peak centered near 438 nm. The DLS study determined the average size of AgNPs to be 21.49 nm. The average size of AgNPs was measured to be 72 nm by SEM. The cubic crystal structure from XRD analysis confirmed the synthesized particles as silver nanoparticles. The AgNPs exhibited remarkable antioxidant properties, as determined by DPPH and ferric reducing antioxidant power (FRAP) assay. The AgNPs also exhibited broad-spectrum antibacterial activity against two Gram-positive bacteria (S. aureus and B. subtilis) and two Gram-negative bacteria (E. coli and R. solanacearum). The minimum inhibitory concentration (MIC) of AgNPs towards bacterial growth was evaluated. The antibacterial activity of AgNPs was further confirmed by fluorescence microscopy and SEM analysis.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/química , Trichoderma/metabolismo , Antibacterianos/química , Biomassa , Química Verde , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Trichoderma/química
2.
Anal Biochem ; 618: 114121, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33515498

RESUMO

The impact of gamma radiation on the activation of rice innate immunity to blast disease caused by Magnaporthe oryzae is described. In the present study, fenugreek seed extracts radiated with different doses of gamma rays viz. 5Gy, 10Gy, 15Gy, 20Gy and 25Gy were examined for their presence of biocompounds as well as for its ability to induce plant growth promotion and resistance against rice blast disease. The results of GC-MS analysis detected antimicrobial properties in methanolic extract. Enhanced germination (97%) and vigor (2718) was noticed in seeds pretreated with 20 Gy of gamma radiation in comparison with non-irradiated controls. Under greenhouse conditions, a significant disease protection of 56.7% on 3rd and 4th day after inoculation against rice blast was observed in 15Gy-irradiated rice plants challenge-inoculated with M. oryzae. Further, a significant increase in the hydrogen peroxide, phenol and lignin deposition was noticed in 20Gy-irradiated rice plants. Additionally, rice plants pretreated with 15Gy induced maximum activities of peroxidase (POX) and polyphenol oxidase (PPO) compared to untreated control plants. These findings revealed that rice plants-pretreated with gamma radiation elicit resistance against rice blast disease as well as strengthening the growth parameters by modulating cellular and biochemical defense system.


Assuntos
Resistência à Doença/efeitos dos fármacos , Raios gama , Oryza , Doenças das Plantas/microbiologia , Extratos Vegetais/farmacologia , Trigonella/química , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Extratos Vegetais/química
3.
Anal Biochem ; 614: 114024, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245903

RESUMO

Baliospermum montanum (Willd.) Muell. Arg, a medicinal plant distributed throughout India from Kashmir to peninsular-Indian region is extensively used to treat jaundice, asthma, and constipation. In the current study, 203 endophytic fungi representing twenty-nine species were isolated from tissues of B. montanum. The colonization and isolation rate of endophytes were higher in stem followed by seed, root, leaf and flower. The phytochemical analysis revealed 70% endophytic isolates showed alkaloids and flavonoids, 13% were positive for phenols, saponins and terpenoids. Further, these endophytes produced remarkable extracellular enzymes such as amylase, cellulase, phosphates, protease and lipase. The most promisive three endophytic fungi were identified by ITS region and secreted metabolites were identified by gas chromatography-mass spectrometry (GC-MS/MS). The GC-MS profile detected twenty-five bioactive compounds from ethyl acetate extracts. Among endophytic fungi, Trichoderma reesei isolated from flower exhibited nine bioactive compounds namely, 2-Cyclopentenone, 2-(4-chloroanilino)-4-piperidino, Oxime-methoxy-Phenyl, Methanamine N-hydroxy-N-methyl, Strychane, Cyclotetrasiloxane, Octamethyl and 1-Acetyl-20a-hydroxy-16-methylene. The endophyte, Aspergillus brasiliensis isolated from root and Fusarium oxysporum isolated from seed produced nine and seven bioactive compounds, respectively. Overall, a significant contribution of bioactive compounds was noticed from the diverse endophytic fungi associated with B. montanum and could be explored for development of novel drug with commercial values.


Assuntos
Aspergillus/isolamento & purificação , Endófitos/isolamento & purificação , Enzimas/análise , Euphorbiaceae/microbiologia , Fusarium/isolamento & purificação , Hypocreales/isolamento & purificação , Alcaloides/análise , Amilases/análise , Aspergillus/química , Celulase/análise , Endófitos/química , Flavonoides/análise , Fusarium/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hypocreales/química , Índia , Lipase/análise , Peptídeo Hidrolases/análise , Folhas de Planta/microbiologia , Plantas Medicinais/microbiologia
4.
Sci Rep ; 10(1): 16438, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009462

RESUMO

Amomum nilgiricum is one of the plant species reported from Western Ghats of India, belonging to the family Zingiberaceae, with ethno-botanical values, and is well-known for their ethno medicinal applications. In the present investigation, ethyl acetate and methanol extracts of A. nilgiricum were analyzed by Fourier transform infrared spectrometer (FTIR) and gas chromatography-mass spectrometry (GC-MS) to identify the important functional groups and phytochemical constituents. The FTIR spectra revealed the occurrence of functional characteristic peaks of aromatic amines, carboxylic acids, ketones, phenols and alkyl halides group from leaf and rhizome extracts. The GC-MS analysis of ethyl acetate and methanol extracts from leaves, and methanol extract from rhizomes of A. nilgiricum detected the presence of 25 phytochemical compounds. Further, the leaf and rhizome extracts of A. nilgiricum showed remarkable antibacterial and antifungal activities at 100 mg/mL. The results of DPPH and ferric reducing antioxidant power assay recorded maximum antioxidant activity in A. nilgiricum methanolic leaf extract. While, ethyl acetate leaf extract exhibited maximum α-amylase inhibition activity, followed by methanolic leaf extract exhibiting aldose reductase inhibition. Subsequently, these 25 identified compounds were analyzed for their bioactivity through in silico molecular docking studies. Results revealed that among the phytochemical compounds identified, serverogenin acetate might have maximum antibacterial, antifungal, antiviral, antioxidant and antidiabetic properties followed by 2,4-dimethyl-1,3-dioxane and (1,3-13C2)propanedioic acid. To our best knowledge, this is the first description on the phytochemical constituents of the leaves and rhizomes of A. nilgiricum, which show pharmacological significance, as there has been no literature available yet on GC-MS and phytochemical studies of this plant species. The in silico molecular docking of serverogenin acetate was also performed to confirm its broad spectrum activities based on the binding interactions with the antibacterial, antifungal, antiviral, antioxidant and antidiabetic target proteins. The results of the present study will create a way for the invention of herbal medicines for several ailments by using A. nilgiricum plants, which may lead to the development of novel drugs.


Assuntos
Acetatos/química , Amomum/química , Extratos Vegetais/química , Antibacterianos/química , Antifúngicos/química , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Índia , Metanol/química , Simulação de Acoplamento Molecular/métodos , Fenóis/química , Compostos Fitoquímicos/química , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA