Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 152: 108437, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37030093

RESUMO

Focusing electric pulse effects away from electrodes is a challenge because the electric field weakens with distance. Previously we introduced a remote focusing method based on bipolar cancellation, a phenomenon of low efficiency of bipolar nanosecond electric pulses (nsEP). Superpositioning two bipolar nsEP into a unipolar pulse canceled bipolar cancellation ("CANCAN" effect), enhancing bioeffects at a distance despite the electric field weakening. Here, we introduce the next generation (NG) CANCAN focusing with unipolar nsEP packets designed to produce bipolar waveforms near electrodes (suppressing electroporation) but not at the remote target. NG-CANCAN was tested in CHO cell monolayers using a quadrupole electrode array and labeling electroporated cells with YO-PRO-1 dye. We routinely achieved 1.5-2 times stronger electroporation in the center of the quadrupole than near electrodes, despite a 3-4-fold field attenuation. With the array lifted 1-2 mm above the monolayer (imitating a 3D treatment), the remote effect was enhanced up to 6-fold. We analyzed the role of nsEP number, amplitude, rotation, and inter-pulse delay, and showed how remote focusing is enhanced when re-created bipolar waveforms exhibit stronger cancellation. Advantages of NG-CANCAN include the exceptional versatility of designing pulse packets and easy remote focusing using an off-the-shelf 4-channel nsEP generator.


Assuntos
Eletricidade , Eletroporação , Cricetinae , Animais , Permeabilidade da Membrana Celular , Cricetulus , Eletroporação/métodos , Terapia com Eletroporação , Células CHO , Estimulação Elétrica/métodos
2.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208945

RESUMO

Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength-duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies.


Assuntos
Eletroporação/instrumentação , Fibras Nervosas/fisiologia , Potenciais de Ação , Animais , Anuros , Técnicas Eletroquímicas , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA