Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37511006

RESUMO

This study investigates the features of interactions between cysteine proteases (bromelain, ficin, and papain) and a graft copolymer of carboxymethyl cellulose sodium salt with N-vinylimidazole. The objective is to understand the influence of this interactions on the proteolytic activity and stability of the enzymes. The enzymes were immobilized through complexation with the carrier. The interaction mechanism was examined using Fourier-transform infrared spectroscopy and flexible molecular docking simulations. The findings reveal that the enzymes interact with the functional groups of the carrier via amino acid residues, resulting in the formation of secondary structure elements and enzyme's active sites. These interactions induce modulation of active site of the enzymes, leading to an enhancement in their proteolytic activity. Furthermore, the immobilized enzymes demonstrate superior stability compared to their native counterparts. Notably, during a 21-day incubation period, no protein release from the conjugates was observed. These results suggest that the complexation of the enzymes with the graft copolymer has the potential to improve their performance as biocatalysts, with applications in various fields such as biomedicine, pharmaceutics, and biotechnology.


Assuntos
Bromelaínas , Papaína , Papaína/metabolismo , Ficina/química , Ficina/metabolismo , Carboximetilcelulose Sódica , Simulação de Acoplamento Molecular , Polímeros , Cloreto de Sódio , Cloreto de Sódio na Dieta , Sódio
2.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501516

RESUMO

Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan-carboxymethylchitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate-during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and N-(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively). In addition, all derivatives of chitosan studied in this work form hydrogen bonds with His158 located in the active site of bromelain (except N-(2-hydroxypropyl)-3-trimethylammonium chitosan), apparently explaining a significant decrease in the activity of biocatalysts. The N-(2-hydroxypropyl)-3-trimethylammonium chitosan displays only physical interactions with His158, thus possibly modulating the structure of the bromelain active site and leading to the hyperactivation of the enzyme, up to 208% of the total activity and 158% of the specific activity. The FTIR analysis revealed that interaction between N-(2-hydroxypropyl)-3-trimethylammonium chitosan and bromelain did not significantly change the enzyme structure. Perhaps this is due to the slowing down of aggregation and the autolysis processes during the complex formation of bromelain with a carrier, with a minimal modification of enzyme structure and its active site orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA