Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2650, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788265

RESUMO

The long-term use of chemical fertilizers to maintain agricultural production has had various harmful effects on farmland and has greatly impacted agriculture's sustainable expansion. Graphene, a unique and effective nanomaterial, is used in plant-soil applications to improve plant nutrient uptake, reduce chemical fertilizer pollution by relieving inadequate soil nutrient conditions and enhance soil absorption of nutrient components. We investigated the effects of graphene amendment on nutrient content, maize growth, and soil physicochemical parameters. In each treatment, 5 graphene concentration gradients (0, 25, 50, 100, and 150 g kg-1) were applied in 2 different types (single-layer and few-layers, SL and FL). Soil aggregates, soil accessible nutrients, soil enzyme activity, plant nutrients, plant height, stem diameter, dry weight, and fresh weight were all measured throughout the maize growth to the V3 stage. Compared to the control (0 g kg-1), we found that graphene increased the percentage of large agglomerates (0.25-10 mm) in the soil and significantly increased the geometric mean diameter (GMD) and mean weight diameter (MWD) values of > 0.25 mm water-stable agglomerates as the increase of concentration. Soil available nutrient content (AN, AP, and AK) increased, peaking at 150 g kg-1. Graphene boosted nutrient absorption by maize plants, and aboveground total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents rose with the increasing application, which raised aboveground fresh weight, dry weight, plant height, and stalk thickness. The findings above confirmed our prediction that adding graphene to the soil may improve maize plant biomass by enhancing soil fertility and improving the soil environment. Given the higher manufacturing cost of single-layer graphene and the greater effect of few-layer graphene on soil and maize plants at the same concentration, single-layer graphene and few-layer graphene at a concentration of 50 g kg-1 were the optimal application rates.


Assuntos
Grafite , Solo , Solo/química , Zea mays , Plântula/química , Nutrientes , Nitrogênio/análise , Fertilizantes/análise , Fósforo
2.
Sci Total Environ ; 653: 649-657, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759590

RESUMO

The intense pollution of urban river sediments with rapid urbanization has attracted considerable attention. Complex contaminated sediments urgently need to be remediated to conserve the ecological functions of impacted rivers. This study investigated the effect of using methanol as a co-substrate on the stimulation of the indigenous microbial consortium to enhance the bioremediation of petroleum hydrocarbons (PHs) and polycyclic aromatic hydrocarbons (PAHs) in an urban river sediment. After 65 days of treatment, the PAHs degradation efficiencies in the sediment adding methanol were 4.87%-40.3% higher than the control. The removal rate constant of C31 was 0.0749 d-1 with 100 mM of supplied methanol, while the corresponding rate was 0.0399 d-1 in the control. Four-ring PAHs were effectively removed at a degradation efficiency of 65%-69.8%, increased by 43.3% compared with the control. Sulfate reduction and methanogenesis activity were detected, and methane-producing archaea (such as Methanomethylovorans, with a relative abundance of 25.87%-58.53%) and the sulfate-reducing bacteria (SRB, such as Desulfobulbus and Desulfobacca) were enriched. In addition, the chemolithoautotrophic sulfur-oxidizing bacteria (SOB, such as Sulfuricurvum, with a relative abundance of 34%-39.2%) were predominant after the depletion of total organic carbon (TOC), and markedly positively correlated with the PHs and PAHs degradation efficiencies (P < 0.01). The SRB and SOB populations participated in the sulfur cycle, which was associated with PHs and PAHs degradation. Other potential functional bacteria (such as Dechloromonas) were also obviously enriched and significantly positively correlated with the TOC concentration after methanol injection (P < 0.001). This study provides a new insight into the succession of the indigenous microbial community with methanol as a co-substrate for the enhanced bioremediation of complexly contaminated urban river sediments.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Sedimentos Geológicos/química , Metanol/química , Microbiota/efeitos dos fármacos , Rios/química , Poluentes Químicos da Água/metabolismo , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/microbiologia , Modelos Teóricos , Petróleo/análise , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rios/microbiologia , Urbanização , Poluentes Químicos da Água/análise
3.
Chemosphere ; 194: 553-561, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29241129

RESUMO

Bioelectrochemical systems (BESs) have been tentatively applied for wastewater treatment processes, but the complex composition of wastewater could lead to difficulties in establishing functional biofilm or result in performance instability. Few studies have investigated the enrichment of biocathode with domestic wastewater (DW) and the function. A biocathode with multi-pollutant removal capabilities was enriched based on polarity inverted bioanode, which was established with DW. The biocathode function was examined using model pollutants (nitrate, nitrobenzene and Acid Orange 7) supplemented as sole or mixed electron acceptors. When compared to the anaerobic control treatment, the biofilm demonstrated significantly enhanced reduction abilities in the open circuit. For the closed circuit, their removal efficiencies were further enhanced for both the sole and mixed substrates conditions. The bioanodes community structure and diversity markedly changed after operating for 50 d as biocathodes. The biocathode multifunctionality and stability could be related to the maintenance of organic matters fermentative bacteria (mainly belonging to Bacteroidetes, Firmicutes and Synergistetes) and the enrichment of versatile pollutant-reducing bacteria (e.g. Pseudomonas, Thauera and Comamonas from Proteobacteria). Other pollutants, such as perchlorate, sulfate, heavy metals, and halogenated organics, may also work as potential electron acceptors. This study provides a new strategy to improve the biocathode community multifunctionality for simultaneous bioelectroreduction, which can be combined with other wastewater treatment processes in actual application.


Assuntos
Bactérias , Fontes de Energia Bioelétrica , Biofilmes , Águas Residuárias/química , Biodegradação Ambiental , Eletrodos , Elétrons , Poluentes Ambientais/química , Nitratos , Nitrobenzenos , Oxirredução , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA