Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 36(2): 899-913, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35041255

RESUMO

Nonalcoholic fatty liver disease (NAFLD), a metabolic disease, has received wide attention worldwide. However, there is no approved effective drug for NAFLD treatment. In the study, H&E and Oil Red O staining were employed to detect liver histopathological changes and the accumulation of lipid droplets. Quantitative real-time PCR, Western blot, bioinformatics, luciferase assay, immunofluorescence staining, reactive oxygen species (ROS), and siRNA were used to further elucidate the mechanism of isoliquiritigenin (ISL) against NAFLD. The results showed that ISL significantly reduced the liver-to-body weight ratios and biochemical index. And the staining results showed that ISL remarkedly ameliorated liver histopathological changes of NAFLD. Furthermore, ISL significantly increased the levels of PPARα, CPT1α, and ACADS, which were involved in lipid metabolism, and inhibited the ROS, TNF-α, IL-1ß, and IL-6 expression by activating PGC-1α. Bioinformatics and luciferase assay analysis confirmed that miR-138-5p might bind to PGC-1α mRNA in NAFLD. Importantly, the expression of miR-138-5p was increased in the NAFLD, which was significantly decreased by ISL. In addition, the miR-138-5p inhibitor also promoted lipid metabolism and inhibited inflammatory response in NAFLD via PGC-1α activation. The above results demonstrate that ISL alleviates NAFLD through modulating miR-138-5p/PGC-1α-mediated lipid metabolism and inflammatory reaction in vivo and in vitro.


Assuntos
Chalconas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Chalconas/farmacologia , Regulação para Baixo , Humanos , Fígado , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
Phytomedicine ; 96: 153845, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34785106

RESUMO

BACKGROUND: Alcoholic liver disease (ALD), one of the most prevalent forms of liver disease, has received wide attention worldwide. However, limited efficient and appropriate therapeutic agents were responded to ALD. Isoliquiritigenin (ISL), a flavonoid isolated from liquorice, possesses multiple pharmacological activities. PURPOSE: The current study investigated the hepatoprotective effect of ISL against ALD and further elucidate the involvement of miR-23a-3p/peroxisome proliferative activated receptor-γ coactivator 1 alpha (PGC-1α) in vivo and in vitro experiments. STUDY DESIGN AND METHODS: In the study, H&E and Oil Red O staining were employed to detect liver histopathological changes and the accumulation of lipid droplets. Quantitative real-time PCR, bioinformatics, luciferase assay, immunofluorescence staining, reactive oxygen species (ROS), Western blot, and siRNA were used to further explore the mechanism of ISL protection. RESULTS: ISL significantly reduced the liver-to-body weight ratios and biochemical index. The staining results showed that ISL remarkedly ameliorated the histopathological changes in the liver. Furthermore, ISL promoted fatty acid metabolism via induction in the expression of PGC-1α-target genes PPARα, CPT1α, and ACADs, and inhibited the ROS, TNF-α, IL-1ß, and IL-6 expression. Bioinformatics and Luciferase assay analysis confirmed that miR-23a-3p might bind to PGC-1α mRNA in ALD. Significantly, the expression of miR-23a-3p was increased in the ALD, which was significantly decreased by ISL. In addition, the miR-23a-3p inhibitor also promoted lipid metabolism in ALD via PGC-1α activation. CONCLUSIONS: We first demonstrated that ISL could alleviate ALD, and further verified that ISL exerted protective effects through modulating miR-23a-3p/PGC-1α-mediated lipid metabolism in vivo and in vitro.


Assuntos
Chalconas , MicroRNAs , Chalconas/farmacologia , Fígado/metabolismo , MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Phytomedicine ; 90: 153629, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34304130

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is a progressive disease beginning with simple steatosis but can progress to alcoholic steatohepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. The morbidity of ALD is on the rise and has been a large burden on global healthcare system. It is unfortunately that there are currently no approved therapeutic drugs against ALD. Hence, it is of utmost urgency to develop the efficacious therapies. The ability of many molecular targets against ALD is under investigation. Farnesoid X receptor (FXR), a member of the ligand-activated transcription factor superfamily, has been recently demonstrated to have a crucial role in the pathogenesis and progression of ALD. PURPOSE: The purpose of the study is to determine whether Yangonin (YAN), a FXR agonist previously demonstrated by us, exerts the hepatoprotective effects against ALD and further to clarify the mechanisms in vitro and in vivo. STUDY DESIGN: The alcoholic liver disease model induced by Lieber-Decarli liquid diet was established with or without Yan treatment. METHODS: We determined the liver to body weight ratios, the body weight, serum and hepatic biochemical indicators. The alleviation of the liver histopathological progression was evaluated by H&E and immunohistochemical staining. Western blot and quantitative real-time PCR were used to demonstrate YAN treatment-mediated alleviation mechanisms of ALD. RESULTS: The data indicated that YAN existed hepatoprotective activity against ALD via FXR activation. YAN improved the lipid homeostasis by decreasing hepatic lipogenesis and increasing fatty acid ß-oxidation and lipoprotein lipolysis through modulating the related protein. Also, YAN ameliorated ethanol-induced cholestasis via inhibiting bile acid uptake transporter Ntcp and inducing bile acid efflux transporter Bsep and Mrp2 expression. Besides, YAN improved bile acid homeostasis via inducing Sult2a1 expression and inhibiting Cyp7a1 and Cyp8b1 expression. Furthermore, YAN attenuated ethanol-triggered hepatocyte damage by inhibiting cellular senescence marker P16, P21 and Hmga1 expression. Also, YAN alleviated ethanol-induced inflammation by down-regulating the inflammation-related gene IL-6, IL-1ß and TNF-α expression. Notably, the protective effects of YAN were cancelled by FXR siRNA in vitro and FXR antagonist GS in vivo. CONCLUSIONS: YAN exerted significant hepatoprotective effects against liver injury triggered by ethanol via FXR-mediated target gene modulation.


Assuntos
Senescência Celular , Colestase , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas , Pironas/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares , Homeostase , Fígado , Hepatopatias Alcoólicas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
4.
Neural Regen Res ; 14(8): 1438-1444, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30964070

RESUMO

Genome-wide studies have reported that Parkinson's disease is associated with abnormal expression of various growth factors. In this study, male C57BL/6 mice aged 10 weeks were used to establish Parkinson's disease models using an intraperitoneal injection of 60 mg/kg 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. 28 days later, 10 or 100 ng fibroblast growth factor 20 was injected intracerebroventricularly. The electrophysiological changes in the mouse hippocampus were recorded using a full-cell patch clamp. Expression of Kv4.2 in the substantia nigra was analyzed using a western blot assay. Serum malondialdehyde levels were analyzed by enzyme-linked immunosorbent assay. The motor coordination of mice was evaluated using the rotarod test. The results showed that fibroblast growth factor 20 decreased A-type potassium current in neurons of the substantia nigra, increased long-term potentiation amplitude in the hippocampus, and downregulated Kv4.2 expression. A high dose of fibroblast growth factor 20 reduced serum malondialdehyde levels and enhanced the motor coordination of mice. These findings confirm that fibroblast growth factor 20 has a therapeutic effect on the toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and its mechanism of action is associated with the inhibition of A-type K+ currents and Kv4.2 expression. All animal procedures were approved by the Animal Care and Use Committee of Qilu Hospital of Shandong University, China in 2017 (approval No. KYLL-2017-0012).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA