RESUMO
Seven new C-geranylated flavanones, fortunones F - L (1-7), were isolated from the fresh mature fruits of Paulownia fortunei (Seem.) Hemsl. Their structures were determined by extensive spectroscopic data interpretation (UV, IR, HRMS, NMR, and CD). These new isolated compounds were all with a cyclic side chain modified from the geranyl group. Among them, compounds 1-3 all possessed a dicyclic geranyl modification, which was described firstly for Paulownia C-geranylated flavonoids. All the isolated compounds were subjected to the cytotoxic assay on human lung cancer cell A549, mouse prostate cancer cell RM1 and human bladder cancer cell T24, respectively. Results indicated A549 cell line was more sensitive to C-geranylated flavanones than the other two cancer cell lines and compounds 1, 7 and 8 exhibited potential anti-tumor effects (IC50 Ë 10 µM). Further research revealed the effective C-geranylated flavanones could exert their anti-proliferative activity on A549 cells by inducing apoptosis and blocking cells in G1 phase.
Assuntos
Flavanonas , Neoplasias , Animais , Camundongos , Humanos , Frutas/química , Estrutura Molecular , Flavanonas/farmacologia , Flavanonas/química , Flavonoides/química , Linhagem Celular , Neoplasias/tratamento farmacológicoRESUMO
Three-dimensional feather like bayerite/boehmite nanocomposites were synthesized by a facile one-pot hydrothermal method. The obtained nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The removal properties toward fluoride were investigated, including adsorption kinetics, adsorption isotherm, and influences of pH and coexisting anions. The maximal adsorption capacity was 56.80 mg g(-1) at pH 7.0, which is favorable compared to those reported in the literature using other adsorbents. The coexisting of sulfate and bicarbonate inhibited the fluoride removal especially at high concentrations. Furthermore, the removal mechanism was revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results suggest that both of the surface hydroxyl groups and the nitrate anions were participated in the ion-exchange process.