Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328570

RESUMO

Burkholderia sp. SSG is a potent biological control agent. Even though its survival on the leaf surface declined rapidly, SSG provided extended, moderate plant protection from a broad spectrum of pathogens. This study used Arabidopsis Col-0 and its mutants, eds16-1, npr1-1, and pad4-1 as model plants and compared treated plants with non-treated controls to elucidate whether SSG triggers plant defense priming. Only eds16-1 leaves with SSG became purplish, suggesting the involvement of salicylic acid (SA) in SSG-induced priming. cDNA sequencing of Col-0 plants and differential gene expression analysis identified 120 and 119 differentially expressed genes (DEGs) at 6- and 24-h post-treatment (hpt) with SSG, respectively. Most of these DEGs encoded responses to biotic and abiotic stimuli or stresses; four DEGs had more than two isoforms. A total of 23 DEGs were shared at 6 and 24 hpt, showing four regulation patterns. Functional categorization of these shared DEGs, and 44 very significantly upregulated DEGs revealed that SSG triggered various defense priming mechanisms, including responses to phosphate or iron deficiency, modulation of defense-linked SA, jasmonic acid, ethylene, and abscisic acid pathways, defense-related gene regulation, and chromatin modification. These data support that SSG is an induced systemic resistance (ISR) trigger conferring plant protection upon pathogen encounter.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Burkholderia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Burkholderia/genética , DNA Complementar , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transcriptoma
2.
Food Funct ; 13(5): 2832-2845, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179169

RESUMO

Obesity continues to be a global public health challenge. Litchi chinensis seed is rich in bioactive ingredients with pharmacological effects, such as hypoglycemic activity and anti-oxidation. This study aimed to assess the potential anti-obesity effects of L. chinensis seed and the changes of gut microbiota and mycobiota compositions in obese zebrafish induced by a high-fat diet. The anti-obesity effects were supplemented and validated in high-fat diet-induced obese mice. In this study, various chemical components of L. chinensis seed water and ethanol extracts were detected using UHPLC-QE-MS, and both extracts showed strong in vitro antioxidant activities. Network pharmacology analysis showed the potential of the extracts to improve obesity. Litchi chinensis seed powder, water and ethanol extracts decreased the weight of obese zebrafish, improved lipid accumulation and lipid metabolism, regulated appetite, and inhibited cell apoptosis and inflammation of the liver and intestine. They showed similar effects in obese mice, and also reduced the weight of fat tissues, regulated insulin resistance and glucose metabolism, and improved the intestinal barrier. Additionally, L. chinensis seed modulated the compositions of gut microbiota and mycobiota in zebrafish, with the regulation of the proportion of bacteria that produce short-chain fatty acids or affect intestine health, including Cetobacterium, Trichococcus, Aeromonas, Staphylococcus, and Micrococcaceae, and the proportion of fungi that produce mycotoxins or have special metabolic capacities, including Penicillium, Candida, Rhodotorula, and Trichoderma. Spearman's correlation analysis revealed the potential link between zebrafish obesity parameters, gut bacteria and fungi. Overall, these findings indicated that L. chinensis seed effectively improved obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Antioxidantes/farmacologia , Litchi , Extratos Vegetais/farmacologia , Animais , Fármacos Antiobesidade/química , Antioxidantes/química , Dieta Hiperlipídica , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , Extratos Vegetais/química , Sementes , Peixe-Zebra
3.
Nat Commun ; 11(1): 5015, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024120

RESUMO

Human gut microbiome is a promising target for managing type 2 diabetes (T2D). Measures altering gut microbiota like oral intake of probiotics or berberine (BBR), a bacteriostatic agent, merit metabolic homoeostasis. We hence conducted a randomized, double-blind, placebo-controlled trial with newly diagnosed T2D patients from 20 centres in China. Four-hundred-nine eligible participants were enroled, randomly assigned (1:1:1:1) and completed a 12-week treatment of either BBR-alone, probiotics+BBR, probiotics-alone, or placebo, after a one-week run-in of gentamycin pretreatment. The changes in glycated haemoglobin, as the primary outcome, in the probiotics+BBR (least-squares mean [95% CI], -1.04[-1.19, -0.89]%) and BBR-alone group (-0.99[-1.16, -0.83]%) were significantly greater than that in the placebo and probiotics-alone groups (-0.59[-0.75, -0.44]%, -0.53[-0.68, -0.37]%, P < 0.001). BBR treatment induced more gastrointestinal side effects. Further metagenomics and metabolomic studies found that the hypoglycaemic effect of BBR is mediated by the inhibition of DCA biotransformation by Ruminococcus bromii. Therefore, our study reports a human microbial related mechanism underlying the antidiabetic effect of BBR on T2D. (Clinicaltrial.gov Identifier: NCT02861261).


Assuntos
Berberina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/uso terapêutico , Berberina/uso terapêutico , Feminino , Microbioma Gastrointestinal/fisiologia , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Metagenoma/efeitos dos fármacos , Metagenoma/genética , Pessoa de Meia-Idade , Placebos , Resultado do Tratamento
4.
J Ethnopharmacol ; 261: 113071, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32603676

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xihuang pill, as a famous traditional Chinese medicine formula, is used for tumor treatment in China. The anti-tumor activities and mechanisms of Xihuang pill still remain unclear. AIM OF THE STUDY: The Akt/mTOR signaling pathway plays an important role in mediating cell proliferation and apoptosis in glioblastoma. This study aimed to investigate whether Xihuang pill could potentiate temozolomide-induced apoptosis of glioblastoma U87 and U251 cells in vivo and its underlying mechanisms related to Akt/mTOR pathway. MATERIALS AND METHODS: Human glioblastoma U87 and U251 xenograft models were established. Immunocytochemistry and Western blot were performed to evaluate the anti-proliferative effect, apoptosis and Akt/mTOR signaling mediators. RESULTS: The results showed that Xihuang pill (0.5, 1 g/kg) or temozolomide (10 mg/kg) treatment alone inhibited tumor growth in glioblastoma U87 and U251 xenografts. When Xihuang pill (1 g/kg) and temozolomide (10 mg/kg) were co-administrated, the activities of antitumor growth were markedly increased. Meanwhile, Xihuang pill (0.5, 1 g/kg) or temozolomide (10 mg/kg) treatment alone decreased the levels of Ki67 and PCNA expression in glioblastoma U87 and U251 xenografts. In combination treatment group, the inhibitory effects on Ki67 and PCNA expression were significantly enhanced in glioblastoma U87 and U251 xenografts compared to temozolomide treatment alone. Examining the apoptotic index by TUNEL assay showed similar results. Furthermore, Xihuang pill markedly down-regulated the Bcl-2/Bax ratio and inhibited the activation of Akt/mTOR pathway in glioblastoma U87 and U251 xenografts. In addition, no significant signs of toxicities were related to Xihuang pill and/or temozolomide treatment. CONCLUSIONS: The present study suggested that Xihuang pill might potentiate temozolomide-induced apoptosis of glioblastoma cells in vivo through inhibiting Akt/mTOR-dependent pathway.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Temozolomida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Antígeno Ki-67/metabolismo , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismo
5.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061705

RESUMO

Postfermented Pu-erh tea (PE) protects against metabolic syndrome (MS), but little is known regarding its underlying mechanisms. Animal experiments were performed to determine whether the gut microbiota mediated the improvement in diet-induced MS by PE and its main active components (PEAC). We confirmed that PE altered the body composition and energy efficiency, attenuated metabolic endotoxemia and systemic and multiple-tissue inflammation, and improved the glucose and lipid metabolism disorder in high-fat diet (HFD)-fed mice via multiple pathways. Notably, PE promoted the lipid oxidation and browning of white adipose tissue (WAT) in HFD-fed mice. Polyphenols and caffeine (CAF) played critical roles in improving these parameters. Meanwhile, PE remodeled the disrupted intestinal homeostasis that was induced by the HFD. Many metabolic changes observed in the mice were significantly correlated with alterations in specific gut bacteria. Akkermansia muciniphila and Faecalibacterium prausnitzii were speculated to be the key gut bacterial links between the PEAC treatment and MS at the genus and species levels. Interestingly, A. muciniphila administration altered body composition and energy efficiency, promoted the browning of WAT, and improved the lipid and glucose metabolism disorder in the HFD-fed mice, whereas F. prausnitzii administration reduced the HFD-induced liver and intestinal inflammatory responses. In summary, polyphenol- and CAF-rich PE improved diet-induced MS, and this effect was associated with a remodeling of the gut microbiota.


Assuntos
Cafeína/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Polifenóis/farmacologia , Chá/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Endotoxemia/tratamento farmacológico , Endotoxemia/microbiologia , Células HEK293 , Células HeLa , Humanos , Inflamação/tratamento farmacológico , Inflamação/microbiologia , Intestinos/microbiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos
6.
Appl Microbiol Biotechnol ; 101(12): 5115-5130, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28382453

RESUMO

The aqueous leaf extract of Moringa oleifera Lam. (LM-A) is reported to have many health beneficial bioactivities and no obvious toxicity, but have mild adverse effects. Little is known about the mechanism of these reported adverse effects. Notably, there has been no report about the influence of LM-A on intestinal microecology. In this study, animal experiments were performed to explore the relationships between metabolic adaptation to an LM-A-supplemented diet and gut microbiota changes. After 8-week feeding with normal chow diet, the body weight of mice entered a stable period, and one of the group received daily doses of 750-mg/kg body weight LM-A by gavage for 4 weeks (assigned as LM); the other group received the vehicle (assigned as NCD). The liver weight to body weight ratio was enhanced, and the ceca were enlarged in the LM group compared with the NCD group. LM-A-supplemented-diet mice elicited a uniform metabolic adaptation, including slightly influenced fasting glucose and blood lipid profiles, significantly reduced liver triglycerides content, enhanced serum lipopolysaccharide level, activated inflammatory responses in the intestine and liver, compromised gut barrier function, and broken intestinal homeostasis. Many metabolic changes in mice were significantly correlated with altered specific gut bacteria. Changes in Firmicutes, Eubacterium rectale/Clostridium coccoides group, Faecalibacterium prausnitzii, Akkermansia muciniphila, segmented filamentous bacteria, Enterococcus spp., and Sutterella spp. may play an important role in the process of host metabolic adaptation to LM-A administration. Our research provides an explanation of the adverse effects of LM-A administration on normal adult individuals in the perspective of microecology.


Assuntos
Suplementos Nutricionais/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Moringa oleifera , Extratos Vegetais/efeitos adversos , Folhas de Planta , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Dieta Hiperlipídica , Enterococcus/isolamento & purificação , Firmicutes/isolamento & purificação , Homeostase/efeitos dos fármacos , Inflamação , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Lipopolissacarídeos/sangue , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/fisiopatologia , Camundongos , Moringa oleifera/química , Folhas de Planta/química , Triglicerídeos/análise
7.
Asian-Australas J Anim Sci ; 28(4): 485-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25656208

RESUMO

This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

8.
Phytopathology ; 100(7): 632-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20528180

RESUMO

Phytophthora species are destructive fungus-like plant pathogens that use asexual single-celled flagellate zoospores for dispersal and plant infection. Many of the zoospore behaviors are density-dependent although the underlying mechanisms are poorly understood. Here, we use P. nicotianae as a model and demonstrate autoregulation of some zoospore behaviors using signal molecules that zoospores release into the environment. Specifically, zoospore aggregation, plant targeting, and infection required or were enhanced by threshold concentrations of these signal molecules. Below the threshold concentration, zoospores did not aggregate and move toward a cauline leaf of Arabidopsis thaliana (Col-0) and failed to individually attack annual vinca (Catharanthus roseus cv. Little Bright Eye). These processes were reversed when supplemented with zoospore-free fluid (ZFF) prepared from a zoospore suspension above threshold densities but not with calcium chloride at a concentration equivalent to extracellular Ca(2+) in ZFF. These results suggest that Ca(2+) is not a primary signal molecule regulating these communal behaviors. Zoospores coordinated their communal behaviors by releasing, detecting, and responding to signal molecules. This chemical communication mechanism raises the possibility that Phytophthora plant infection may not depend solely on zoospore number in the real world. Single zoospore infection may take place if it is signaled by a common molecule available in the environment which contributes to the destructiveness of these plant pathogens.


Assuntos
Retroalimentação Fisiológica , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/fisiologia , Arabidopsis/microbiologia , Cálcio/metabolismo , Catharanthus/microbiologia , Comunicação Celular , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA