Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hortic Res ; 10(10): uhad183, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37927407

RESUMO

Chaenomeles speciosa (2n = 34), a medicinal and edible plant in the Rosaceae, is commonly used in traditional Chinese medicine. To date, the lack of genomic sequence and genetic studies has impeded efforts to improve its medicinal value. Herein, we report the use of an integrative approach involving PacBio HiFi (third-generation) sequencing and Hi-C scaffolding to assemble a high-quality telomere-to-telomere genome of C. speciosa. The genome comprised 650.4 Mb with a contig N50 of 35.5 Mb. Of these, 632.3 Mb were anchored to 17 pseudo-chromosomes, in which 12, 4, and 1 pseudo-chromosomes were represented by a single contig, two contigs, and four contigs, respectively. Eleven pseudo-chromosomes had telomere repeats at both ends, and four had telomere repeats at a single end. Repetitive sequences accounted for 49.5% of the genome, while a total of 45 515 protein-coding genes have been annotated. The genome size of C. speciosa was relatively similar to that of Malus domestica. Expanded or contracted gene families were identified and investigated for their association with different plant metabolisms or biological processes. In particular, functional annotation characterized gene families that were associated with the biosynthetic pathway of oleanolic and ursolic acids, two abundant pentacyclic triterpenoids in the fruits of C. speciosa. Taken together, this telomere-to-telomere and chromosome-level genome of C. speciosa not only provides a valuable resource to enhance understanding of the biosynthesis of medicinal compounds in tissues, but also promotes understanding of the evolution of the Rosaceae.

2.
Plant Physiol Biochem ; 158: 34-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296844

RESUMO

Garlic (Allium sativum L.) is an economically important vegetable crop which is used worldwide for culinary and medicinal purposes. Soil salinity constrains the yield components of garlic. Understanding the responsive mechanism of garlic to salinity is crucial to improve its tolerance. To address this problem, two garlic cultivars differing in salt tolerance were used to investigate the long-term adaptive responses to salt stress at phenotype and transcriptome levels. Phenotypic analysis showed four-week salt stress significantly decreased the yield components of salt-sensitive cultivar. Transcriptomes of garlics were de novo assembled and mined for transcriptional activities regulated by salt stress. The results showed that photosynthesis, energy allocation, and secondary metabolism were commonly enriched in both sensitive and tolerant genotypes. Moreover, distinct responsive patterns were also observed between the two genotypes. Compared with the salt-tolerant genotype, most transcripts encoding enzymes in the phenylpropanoid biosynthesis pathway were coordinately down regulated in the salt-sensitive genotype, resulting in alternation of the content and composition of lignin. Meanwhile, transcripts encoding the enzymes in the brassinosteroid (BR) biosynthesis pathway were also systematically down regulated in the salt-sensitive genotypes. Taken together, these results suggested that BR-mediated lignin accumulation possibly plays an important role in garlic adaption to salt stress. These findings expand the understanding of responsive mechanism of garlic to salt stress.


Assuntos
Brassinosteroides/química , Alho/fisiologia , Lignina/química , Estresse Salino , Estresse Fisiológico , Transcriptoma , Alho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA