RESUMO
In recent years, many alkaloids of plant origin have attracted great attention due to their diverse range of biological properties including anti-hyperglycemic, anti-oxidant, anti-inflammatory, anti-diabetic and anti-tumor activity. Herein, the pyranocarbazole alkaloids were isolated from leaves of Murraya koenigii and their anti-cancer potential was investigated in different cancer cell lines. Among all tested compounds, murrayazoline and O-methylmurrayamine A demonstrated potent anti-cancer activity against DLD-1 colon cancer cells with the IC50 values of 5.7µM and 17.9µM, respectively, without any non-specific cytotoxicity against non-cancer HEK-293 and HaCaT cells. Further, studies of pure compounds revealed that the anti-cancer activity of compounds corresponds with altered cellular morphology, cell cycle arrest in G2/M phase, reactive oxygen species level and mitochondrial membrane depolarization of colon cancer cells. In addition, these compounds activated caspase-3 protein and upregulated Bax/Bcl-2 protein expression ratio leading to induction of caspase-dependent apoptosis in DLD-1 cells. These event induced by carbazole alkaloids also coincides with downregulation of Akt/mTOR suggesting downstream targeting of cell survival pathway. Thus, our in vitro studies not only provided scientific basis of the use of M. koenigii leaves in the traditional Indian Ayurveda medicines, but also expands possibilities of medicinal uses of M. koenigii leaves against colon cancer. Particularly, these findings will help in further investigating murrayazoline and O-methylmurrayamine A or their improvised derivatives as new therapeutics for the treatment of colon cancer.
Assuntos
Apoptose , Carbazóis/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Regulação para Baixo , Mitocôndrias/metabolismo , Murraya/química , Folhas de Planta/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carbazóis/química , Carbazóis/farmacologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
INTRODUCTION: Tinospora cordifolia is a widely distributed medicinal plant used in various traditional and commercial Ayurvedic formulations. Due to the wide use of this plant it is important to know the extent of variability in the metabolite profile resulting from geographical location, season and gender. OBJECTIVE: To develop a statistical approach based on phytochemical markers for confident prediction of variations in metabolic profile and cytotoxicity due to geographical, seasonal and gender difference in T. cordifolia stem. METHODS: A HPLC-ESI-QTOF-MS method was used for the metabolite profiling of T. cordifolia stem. The data were analysed using chemometric methods including Student's t-test, ANOVA, FA/PCA and ROC curve analysis and validated for the identification of chemical variations. The bioactivity of selected samples was also tested using a cell cytotoxicity assay to assess the functional aspect of the phytochemical variability. RESULTS: The chemometric approach applied here identified marker ions for geographical locations (m/z 294.1139 and 445.2136), seasons (m/z 344.1482, 359.1501, and 373.1305) and gender (m/z 257.1380) with 100% statistical sensitivity and specificity. An in vitro cytotoxicity evaluation revealed that male T. cordifolia stem was the most effective in inhibiting the growth of cancerous cell lines. CONCLUSIONS: The developed and validated chemometric approach identified the analytical markers for phytochemical variations in unknown T. cordifolia stem samples from male or female plants and samples collected from different geographical locations and seasons. The results are supported by comparative cytotoxic activity data. Copyright © 2017 John Wiley & Sons, Ltd.
Assuntos
Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Caules de Planta/química , Estações do Ano , Tinospora/química , Cromatografia Líquida de Alta Pressão , Geografia , Espectrometria de Massas , Metaboloma , Plantas Medicinais/químicaRESUMO
Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc.
Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/farmacologia , DNA/genética , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Simulação de Acoplamento Molecular , Ratos , Triazóis/química , Triazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismoRESUMO
RBx 11760, a bi-aryl oxazolidinone, was investigated for antibacterial activity against Gram-positive bacteria. The MIC90s of RBx 11760 and linezolid against Staphylococcus aureus were 2 and 4 mg/liter, against Staphylococcus epidermidis were 0.5 and 2 mg/liter, and against Enterococcus were 1 and 4 mg/liter, respectively. Similarly, against Streptococcus pneumoniae the MIC90s of RBx 11760 and linezolid were 0.5 and 2 mg/liter, respectively. In time-kill studies, RBx 11760, tedizolid, and linezolid exhibited bacteriostatic effect against all tested strains except S. pneumoniae RBx 11760 showed 2-log10 kill at 4× MIC while tedizolid and linezolid showed 2-log10 and 1.4-log10 kill at 16× MIC, respectively, against methicillin-resistant S. aureus (MRSA) H-29. Against S. pneumoniae 5051, RBx 11760 showed bactericidal activity, with 4.6-log10 kill at 4× MIC compared to 2.42-log10 and 1.95-log10 kill for tedizolid and linezolid, respectively, at 16× MIC. RBx 11760 showed postantibiotic effects (PAE) at 3 h at 4 mg/liter against MRSA H-29, and linezolid showed the same effect at 16 mg/liter. RBx 11760 inhibited biofilm production against methicillin-resistant S. epidermidis (MRSE) ATCC 35984 in a concentration-dependent manner. In a foreign-body model, linezolid and rifampin resulted in no advantage over stasis, while the same dose of RBx 11760 demonstrated a significant killing compared to the initial control against S. aureus (P < 0.05) and MRSE (P < 0.01). The difference in killing was statistically significant for the lower dose of RBx 11760 (P < 0.05) versus the higher dose of linezolid (P > 0.05 [not significant]) in a groin abscess model. In neutropenic mouse thigh infection, RBx 11760 showed stasis at 20 mg/kg of body weight, whereas tedizolid showed the same effect at 40 mg/kg. These data support RBx 11760 as a promising investigational candidate.
Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Oxazolidinonas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Biofilmes , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Linezolida/farmacologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Neutropenia/tratamento farmacológico , Neutropenia/microbiologia , Organofosfatos/farmacologia , Oxazóis/farmacologia , Oxazolidinonas/química , Oxazolidinonas/farmacocinética , Pielonefrite/tratamento farmacológico , Pielonefrite/microbiologia , Ratos Wistar , Dermatopatias Bacterianas/tratamento farmacológicoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Wrightia tomentosa Roem. & Schult. (Apocynaceae) is known in the traditional medicine for anti-cancer activity along with other broad indications like snake and scorpion bites, renal complications, menstrual disorders etc. However, the anti-cancer activity of this plant or its constituents has never been studied systematically in any cancer types so far. AIM OF THE STUDY: To evaluate the anti-cancer activities of the ethanolic extract of W. tomentosa and identified constituent active molecule(s) against breast cancer. MATERIAL AND METHODS: Powdered leaves of W. tomentosa were extracted with ethanol. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa were tested for its anti-proliferative and pro-apoptotic effects in breast cancer cells MCF-7 and MDA-MB-231. RESULTS: The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa inhibited the proliferation of human breast cancer cell lines, MCF-7 and MDA-MB-231. The fraction F-4 obtained from hexane fraction inhibited proliferation of MCF-7 and MDA-MB-231 cells in concentration and time dependent manner with IC50 of 50 µg/ml and 30 µg/ml for 24 h, 28 µg/ml and 22 µg/ml for 48 h and 25 µg/ml and 20 µg/ml for 72 h respectively. The fraction F-4 induced G1 cell cycle arrest, reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and subsequent apoptosis. Apoptosis is indicated in terms of increased Bax/Bcl-2 ratio, enhanced Annexin-V positivity, caspase 8 activation and DNA fragmentation. The active molecule isolated from fraction F-4, oleanolic acid and urosolic acid inhibited cell proliferation of MCF-7 and MDA-MB-231 cells at IC50 value of 7.5 µM and 7.0 µM respectively, whereas there is devoid of significant cell inhibiting activity in non-cancer originated cells, HEK-293. In both MCF-7 and MDA-MB-231, oleanolic acid and urosolic acid induced cell cycle arrest and apoptosis as indicated by significant increase in Annexin-V positive apoptotic cell counts. CONCLUSION: Our results suggest that W. tomentosa extracts has significant anti-cancer activity against breast cancer cells due to induction of apoptosis pathway. Olenolic and urosolic acid are important constituent molecules in the extract responsible for anti-cancer activity of W. tomentosa.
Assuntos
Antineoplásicos/farmacologia , Apocynaceae , Ácido Oleanólico/farmacologia , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Etanol/química , Células HEK293 , Humanos , L-Lactato Desidrogenase/metabolismo , Folhas de Planta , Solventes/química , Ácido UrsólicoRESUMO
In the course of our studies on the isolation of bioactive compounds from the roots of Coleus forskohlii, a traditional herb in India, rare 13-epi-sclareol has been isolated, and its structure determined by extensive 2D NMR. This is the first report of isolation from this plant. The isolated compound showed antiproliferative activity in breast and uterine cancers in vitro. The antiproliferative activity of 13-epi-sclareol is comparable to Tamoxifen in terms of IC50 and also showed concentration dependent increased apoptotic changes in the breast cancer cell line, MCF-7.