Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175176

RESUMO

Essential oils are a mixture of natural aromatic volatile oils extracted from plants. The use of essential oils is ancient, and has prevailed in different cultures around the world, such as those of the Egyptians, Greeks, Persians, and Chinese. Today, essential oils are used in traditional and complimentary medicines, aromatherapy, massage therapies, cosmetics, perfumes and food industries. The screening effect of essential oils has been studied worldwide. They demonstrate a range of biological activities, such as antiparasitic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, anticancer, antiaging, and neuroprotective properties. In this scoping review, we provide a 10-year updated comprehensive assessment of volatile oils and their effects on the nervous system. MEDLINE, Scopus, and Google Scholar were systematically and strategically searched for original studies investigating these effects from 2012 to 2022. Approximately seventy studies were selected as included studies. Among these studies, several outcomes were reported, including antistress, antianxiety, analgesic, cognitive, and autonomic effects. Some essential oils showed developmental benefits, with the potential to induce neurite outgrowth. The neurotransmitter receptor level can also be modified by essential oil application. Physiological and pathophysiological outcome measures were reported. For physiological outcomes, arousal, cognitive performance, circadian eating behavior, emotional modulation, consumer acceptance, preferences, and willingness to buy were investigated. For pathophysiological conditions, pain, depression, anxiety, stress, sleep disorder, mental fatigue, agitated behavior, and quality of life were measured. In conclusion, essential oils showed promising effects on the nervous system, which can be further applied to their use in functional foods, drinks, and alternative therapy.


Assuntos
Aromaterapia , Depressores do Sistema Nervoso Central , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Qualidade de Vida , Ansiedade , Sistema Nervoso
2.
BMC Complement Med Ther ; 22(1): 83, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317802

RESUMO

BACKGROUND: Paraquat (PQ) has been reported to have a high mortality rate. The major target organ of PQ poisoning is the lungs. The pathogenesis of PQ-induced lung injury involves oxidative stress and inflammation. Unfortunately, there is still no effective antidote for PQ poisoning. We hypothesized that aqueous Thunbergia laurifolia (TL) leaf extract is a possible antidote for PQ-induced lung injury. METHODS: The total phenolic content and caffeic acid content of an aqueous extract of TL leaves were analyzed. Male Wistar rats were randomly divided into four groups (n = 4 per group): the control group (administered normal saline), the PQ group (administered 18 mg/kg body weight (BW) PQ dichloride subcutaneously), the PQ + TL-low-dose (LD) group (administered PQ dichloride subcutaneously and 100 mg/kg BW aqueous TL leaf extract by oral gavage) and the PQ + TL-high-dose (HD) group (administered PQ dichloride subcutaneously and 200 mg/kg BW aqueous TL leaf extract by oral gavage). Malondialdehyde (MDA) levels and lung histopathology were analyzed. In addition, the mRNA expression of NADPH oxidase (NOX), interleukin 1 beta (IL-1ß), and tumor necrosis factor alpha (TNF-α) was assessed using reverse transcription-polymerase chain reaction (RT-PCR), and the protein expression of IL-1ß and TNF-α was analyzed using immunohistochemistry. RESULTS: The total phenolic content of the extract was 20.1 ± 0.39 µg gallic acid equivalents (Eq)/mg extract, and the caffeic acid content was 0.31 ± 0.01 µg/mg. The PQ group showed significantly higher MDA levels and NOX, IL-1ß and TNF-α mRNA expression than the control group. Significant pathological changes, including alveolar edema, diffuse alveolar collapse, hemorrhage, leukocyte infiltration, alveolar septal thickening and vascular congestion, were observed in the PQ group compared with the control group. However, the aqueous TL leaf extract significantly attenuated the PQ-induced increases in MDA levels and NOX, IL-1ß and TNF-α expressions. Moreover, the aqueous TL leaf extract ameliorated PQ-induced lung pathology. CONCLUSION: This study indicates that aqueous TL leaf extract can ameliorate PQ-induced lung pathology by modulating oxidative stress through inhibition of NOX and by regulating inflammation through inhibition of IL-1ß and TNF-α expressions. We suggest that aqueous TL leaf extract can be used as an antidote for PQ-induced lung injury.


Assuntos
Acanthaceae , Lesão Pulmonar , Animais , Inflamação/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Masculino , Estresse Oxidativo , Paraquat/toxicidade , Extratos Vegetais/efeitos adversos , Ratos , Ratos Wistar
3.
Molecules ; 26(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063337

RESUMO

The functional food market is growing with a compound annual growth rate of 7.9%. Thai food recipes use several kinds of herbs. Lemongrass, garlic, and turmeric are ingredients used in Thai curry paste. Essential oils released in the preparation step create the flavor and fragrance of the famous tom yum and massaman dishes. While the biological activities of these ingredients have been investigated, including the antioxidant, anti-inflammatory, and antimicrobial activities, there is still a lack of understanding regarding the responses to the essential oils of these plants. To investigate the effects of essential oil inhalation on the brain and mood responses, electroencephalography was carried out during the non-task resting state, and self-assessment of the mood state was performed. The essential oils were prepared in several dilutions in the range of the supra-threshold level. The results show that Litsea cubeba oil inhalation showed a sedative effect, observed from alpha and beta wave power reductions. The frontal and temporal regions of the brain were involved in the wave alterations. Garlic oil increased the alpha wave power at lower concentrations; however, a sedative effect was also observed at higher concentrations. Lower dilution oil induced changes in the fast alpha activity in the frontal region. The alpha and beta wave powers were decreased with higher dilution oils, particularly in the temporal, parietal, and occipital regions. Both Litsea cubeba and turmeric oils resulted in better positive moods than garlic oil. Garlic oil caused more negative moods than the others. The psychophysiological activities and the related brain functions require further investigation. The knowledge obtained from this study may be used to design functional food products.


Assuntos
Afeto/efeitos dos fármacos , Curcuma/química , Lobo Frontal/fisiologia , Alho/química , Litsea/química , Óleos Voláteis/administração & dosagem , Lobo Temporal/fisiologia , Administração por Inalação , Ondas Encefálicas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletroencefalografia , Feminino , Lobo Frontal/efeitos dos fármacos , Alimento Funcional/análise , Alimento Funcional/economia , Cromatografia Gasosa-Espectrometria de Massas , Voluntários Saudáveis , Humanos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/química , Hipnóticos e Sedativos/farmacologia , Odorantes , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Descanso/fisiologia , Lobo Temporal/efeitos dos fármacos , Tailândia , Adulto Jovem
4.
BMC Complement Altern Med ; 14: 111, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24674233

RESUMO

BACKGROUND: cis-Diammineplatinum (II) dichloride (cisplatin) is the important anti-cancer agent useful in treatment of various cancers. Unfortunately, it can produce unwanted side effects in various tissues, including the liver. The present study investigated the possible protective role of curcumin and α-tocopherol against oxidative stress-induced hepatotoxicity in rats upon cisplatin treatment. METHODS: Male Wistar rats were divided into five groups (n = 5). Saline and Cis groups, rats were intraperitoneal (i.p.) injected with normal saline and cisplatin [20 mg/kg body weight (b.w.)], respectively. Cis + α-tocopherol group, Cis + Cur group and Cis + α-tocopherol + Cur group, rats were pre-treated with a single dose of α-tocopherol (250 mg/kg b.w.), curcumin (200 mg/kg b.w.) and combined α-tocopherol with curcumin, respectively, for 24 h prior the administration of cisplatin. After 72 h of first injection, specimens were collected. Liver enzyme, lipid peroxidation biomarker, liver histopathology and gene expression of liver nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were investigated. RESULTS: Cisplatin revealed a significant increase of hepatic malondialdehyde (MDA) levels and a significant reduction of hepatic superoxide dismutase (SOD) and catalase activities compared to the saline group. It elicited a marked increase of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and demonstrated the liver pathologies including liver congestion, disorganization of hepatic cords and ground glass appearance of hepatocytes. It also demonstrated a significant increase of NADPH oxidase gene expression compared to saline group. Pre-treatment with combined curcumin and α-tocopherol improved the liver enzymes, lipid peroxidation biomarker, liver histopathology and gene expression of liver NADPH oxidase in cisplatin-treated rats. CONCLUSIONS: The findings indicate that pre-treatment with combined curcumin and α-tocopherol can protect cisplatin-induced hepatotoxicity including the biochemical, histological and molecular aspects. The down-regulations of NADPH oxidase gene expression may be involved in abrogating oxidative stress via reduction of reactive oxygen species (ROS) production.


Assuntos
Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cisplatino/efeitos adversos , Curcumina/uso terapêutico , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , alfa-Tocoferol/uso terapêutico , Alanina Transaminase/sangue , Animais , Antineoplásicos/efeitos adversos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Curcuma/química , Curcumina/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , NADPH Oxidases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , alfa-Tocoferol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA