Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 16(10): e0257299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34669714

RESUMO

BACKGROUND: Lifestyle influences endocrine, metabolic and cardiovascular homeostasis. This study investigated the impact of diet and oral anti-diabetic medication on cardio-metabolic health in human-sized diabetic pigs. METHODS: After a growing pre-phase from ~30 to ~69 kg during which domestic pigs were fed either a low fat, low sucrose diet (group A) or a fast food-type diet elevated in lard (15%) and sucrose (40%) (group B), the pigs were subdivided in 5 groups (n = 7-8 pigs per group). Group 1, normal pigs from group A on a low fat, low sugar (L) pig diet and group 2, normal pigs from group B on a high lard (25%), sucrose-fructose (40%), cholesterol (1%) fast food-type (F) diet. Diabetes (D) was induced in group B pigs by streptozotocin and group 3 received the F diet (DF), group 4 received the F diet with Anti-diabetic medication metformin (2 g.day-1)-pioglitazone (40 mg.day-1) (DFA) and group 5 switched to a Plant-Fish oil (25%), Slowly digestible starch (40%) diet (DPFS). The F and PFS diets were identical for fat, carbohydrate and protein content but only differed in fat and carbohydrate composition. The 5 pig groups were followed up for 7 weeks until reaching ~120 kg. RESULTS: In normal pigs, the F diet predisposed to several abnormalities related to metabolic syndrome. Diabetes amplified the inflammatory and cardiometabolic abnormalities of the F diet, but both oral FA medication and the PFS diet partially corrected these abnormalities (mean±SEM) as follows: Fasting plasma TNF-ɑ (pg.ml-1) and NEFA (mmol.l-1) concentrations were high (p<0.02) in DF (193±55 and 0.79±0.16), intermediate in DFA (136±40 and 0.57±012) and low in DPFS pigs (107±31 and 0.48±0.19). Meal intolerance (response over fasting) for glucose and triglycerides (area under the curve, mmol.h-1) and for lactate (3-h postprandial, mmol.l-1) was high (p<0.03) in DF (489±131, 8.6±4.8 and 2.2±0.6), intermediate in DFA (276±145, 1.4±1.1 and 1.6±0.4) and low in DPFS (184±62, 0.7±1.8 and 0.1±0.1). Insulin-mediated glucose disposal (mg.kg-1.min-1) showed a numerical trend (p = NS): low in DF (6.9±2.2), intermediate in DFA (8.2±1.3) and high in DPFS pigs (10.4±2.7). Liver weight (g.kg-1 body weight) and liver triglyceride concentration (g.kg-1 liver) were high (p<0.001) in DF (23.8±2.0 and 69±14), intermediate in DFA (21.1±2.0 and 49±15) and low in DPFS pigs (16.4±0.7 and 13±2.0). Aorta fatty streaks were high (p<0.01) in DF (16.4±5.7%), intermediate in DFA (7.4±4.5%) and low in DPFS pigs (0.05±0.02%). CONCLUSION: This translational study using pigs with induced type 2 diabetes provides evidence that a change in nutritional life style from fast food to a plant-fish oil, slowly digestible starch diet can be more effective than sole anti-diabetic medication.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta com Restrição de Carboidratos , Óleos de Peixe/uso terapêutico , Hipoglicemiantes/uso terapêutico , Óleos de Plantas/uso terapêutico , Animais , Fast Foods/efeitos adversos , Masculino , Metformina/uso terapêutico , Pioglitazona/uso terapêutico , Suínos
2.
Cardiovasc Diabetol ; 10: 64, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21756316

RESUMO

BACKGROUND: Diabetes is thought to accelerate cardiovascular disease depending on the type of diet. This study in diabetic subjects was performed to investigate the metabolic, inflammatory and cardiovascular effects of nutritional components typically present in a Western, Mediterranean or high glycaemic diet. METHODS: Streptozotocin-diabetic pigs (~45 kg) were fed for 10 weeks supplemental (40% of dietary energy) saturated fat/cholesterol (SFC), unsaturated fat (UF) or starch (S) in an eucaloric dietary intervention study. RESULTS: Fasting plasma total, LDL and HDL cholesterol concentrations were 3-5 fold higher (p < 0.01) in SFC compared to UF and S pigs. Fasting plasma NEFA concentrations (mmol/L) were highest (p < 0.05) in SFC (1.09 ± 0.17), intermediate in UF (0.80 ± 0.14) and lowest in S pigs (0.58 ± 0.14) whereas plasma glucose (~13 mmol/L), triglyceride (~0.5 mmol/L) and insulin (~24 pmol/L) concentrations were comparable among SFC, UF and S pigs. The postprandial response area under the curves (AUC, 0-4 h) for glucose but not for insulin and triglyceride responses were intermediate in SFC (617 ± 144) and lowest (p < 0.05) in UF (378 ± 157) compared to S pigs (925 ± 139). Fasting hepatic glucose production, hepatic and peripheral insulin sensitivity and blood pressure were not different among pigs. C-reactive protein (CRP) concentrations (mg/L) were highest (p < 0.05) in SFC (25 ± 4), intermediate in S (21 ± 3) and lowest in UF pigs (14 ± 2). Liver weights, liver and muscle triglyceride concentrations, and the surface area of aorta fatty streaks were highest (p < 0.01) in SFC pigs. A positive correlation between postprandial plasma CRP and aorta fatty streaks was observed in SFC pigs (R(2) = 0.95). Retroperitoneal fat depot weight (g) was intermediate in SFC (260 ± 72), lowest in S (135 ± 51) and highest (p < 0.05) in UF (571 ± 95) pigs. CONCLUSION: Dietary saturated fat/cholesterol induces inflammation, atherosclerosis and ectopic fat deposition whereas an equally high dietary unsaturated fat load does not induce these abnormalities and shows beneficial effects on postprandial glycaemia in diabetic pigs.


Assuntos
Aterosclerose/metabolismo , Distribuição da Gordura Corporal , Proteína C-Reativa/metabolismo , Colesterol na Dieta/farmacologia , Diabetes Mellitus Experimental/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Gorduras na Dieta/farmacologia , Amido/farmacologia , Animais , Aterosclerose/etiologia , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Composição Corporal/fisiologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Masculino , Período Pós-Prandial , Estreptozocina , Suínos , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA