Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 12: 747744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867791

RESUMO

This paper suggests that ATP release induced by the SARS-CoV-2 virus plays a key role in the genesis of the major symptoms and complications of COVID-19. Infection of specific cells which contain the Angiotensin-Converting Enzyme 2 (ACE2) receptor results in a loss of protection of the Mineralocorticoid Receptor (MR). Local activation by cortisol stimulates the release of ATP initially into the basolateral compartment and then by lysosomal exocytosis from the cell surface. This then acts on adjacent cells. In the nose ATP acts as a nociceptive stimulus which results in anosmia. It is suggested that a similar paracrine mechanism is responsible for the loss of taste. In the lung ATP release from type 2 alveolar cells produces the non-productive cough by acting on purinergic receptors on adjacent neuroepithelial cells and activating, via the vagus, the cough reflex. Infection of endothelial cells results in the exocytosis of WeibelPalade bodies. These contain the Von Willebrand Factor responsible for micro-clotting and angiopoietin-2 which increases vascular permeability and plays a key role in the Acute Respiratory Distress Syndrome. To test this hypothesis this paper reports proof of concept studies in which MR blockade using spironolactone and low dose dexamethasone (SpiDex) was given to PCR-confirmed COVID-19 patients. In 80 patients with moderate to severe respiratory failure 40 were given SpiDex and 40 conventional treatment with high dose dexamethasone (HiDex). There was 1 death in the HiDex group and none in the SpiDex. As judged by clinical, biochemical and radiological parameters there were clear statistically significant benefits of SpiDex in comparison to HiDex. A further 20 outpatients with COVID-19 were given SpiDex. There was no control group and the aim was to demonstrate safety. No adverse effects were noted and no patient became hyperkalaemic. 90% were asymptomatic at 10 days. The very positive results suggest that blockade of the MR can produce major benefit in COVID19 patients. Further larger controlled studies of inpatients and outpatients are required not only for SARS-CoV-2 infection per se but also to determine if this treatment affects the incidence of Long COVID.


Assuntos
Anosmia/complicações , COVID-19/diagnóstico , COVID-19/terapia , Nociceptividade , SARS-CoV-2 , Avaliação de Sintomas , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Angiopoietina-2/biossíntese , Enzima de Conversão de Angiotensina 2/biossíntese , Animais , COVID-19/sangue , Dexametasona/administração & dosagem , Dexametasona/sangue , Dexametasona/uso terapêutico , Células Endoteliais/metabolismo , Feminino , Humanos , Hidrocortisona/metabolismo , Rim/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Reação em Cadeia da Polimerase , Ratos , Receptores de Mineralocorticoides/biossíntese , Espironolactona/sangue , Fator de von Willebrand/biossíntese
2.
J Pain Res ; 13: 2269-2278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982390

RESUMO

INTRODUCTION: Cannabidiol (CBD) is reported to produce pain relief, but the clinically relevant cellular and molecular mechanisms remain uncertain. The TRPV1 receptor integrates noxious stimuli and plays a key role in pain signaling. Hence, we conducted in vitro studies, to elucidate the efficacy and mechanisms of CBD for inhibiting neuronal hypersensitivity in cultured rat sensory neurons, following activation of TRPV1. METHODS: Adult rat dorsal root ganglion (DRG) neurons were cultured and supplemented with the neurotrophic factors NGF and GDNF, in an established model of neuronal hypersensitivity. Neurons were stimulated with CBD (Adven 150, EMMAC Life Sciences) at 1, 10, 100 nMol/L and 1, 10 and 50 µMol/L, 48 h after plating. In separate experiments, DRG neurons were also stimulated with capsaicin with or without CBD (1 nMol/L to10 µMol/L), in a functional calcium imaging assay. The effects of the adenylyl cyclase activator forskolin and the calcineurin inhibitor cyclosporin were determined. We also measured forskolin-stimulated cAMP levels, without and after treatment with CBD, using a homogenous time-resolved fluorescence (HTRF) assay. The results were analysed using Mann-Whitney test. RESULTS: DRG neurons treated with 10 and 50 µMol/L CBD showed calcium influx, but not at lower doses. Neurons treated with capsaicin demonstrated robust calcium influx, which was dose-dependently reduced in the presence of low dose CBD (IC50 = 100 nMol/L). The inhibition or desensitization by CBD was reversed in the presence of forskolin and cyclosporin. Forskolin-stimulated cAMP levels were significantly reduced in CBD treated neurons. CONCLUSION: CBD at low doses corresponding to plasma concentrations observed physiologically inhibits or desensitizes neuronal TRPV1 signalling by inhibiting the adenylyl cyclase - cAMP pathway, which is essential for maintaining TRPV1 phosphorylation and sensitization. CBD also facilitated calcineurin-mediated TRPV1 inhibition. These mechanisms may underlie nociceptor desensitization and the therapeutic effect of CBD in animal models and patients with acute and chronic pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA