Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Metab ; 124(1): 87-93, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29661558

RESUMO

INTRODUCTION: Cerebral folate deficiency (CFD) syndromes are defined as neuro-psychiatric conditions with low CSF folate and attributed to different causes such as autoantibodies against the folate receptor-alpha (FR) protein that can block folate transport across the choroid plexus, FOLR1 gene mutations or mitochondrial disorders. High-dose folinic acid treatment restores many neurologic deficits. STUDY AIMS AND METHODS: Among 36 patients from 33 families the infantile-onset CFD syndrome was diagnosed based on typical clinical features and low CSF folate. All parents were healthy. Three families had 2 affected siblings, while parents from 4 families were first cousins. We analysed serum FR autoantibodies and the FOLR1 and FOLR2 genes. Among three consanguineous families homozygosity mapping attempted to identify a monogenetic cause. Whole exome sequencing (WES) was performed in the fourth consanguineous family, where two siblings also suffered from polyneuropathy as an atypical finding. RESULTS: Boys (72%) outnumbered girls (28%). Most patients (89%) had serum FR autoantibodies fluctuating over 5-6 weeks. Two children had a genetic FOLR1 variant without pathological significance. Homozygosity mapping failed to detect a single autosomal recessive gene. WES revealed an autosomal recessive polynucleotide kinase 3´phosphatase (PNKP) gene abnormality in the siblings with polyneuropathy. DISCUSSION: Infantile-onset CFD was characterized by serum FR autoantibodies as its predominant pathology whereas pathogenic FOLR1 gene mutations were absent. Homozygosity mapping excluded autosomal recessive inheritance of any single responsible gene. WES in one consanguineous family identified a PNKP gene abnormality that explained the polyneuropathy and also its contribution to the infantile CFD syndrome because the PNKP gene plays a dual role in both neurodevelopment and immune-regulatory function. Further research for candidate genes predisposing to FRα-autoimmunity is suggested to include X-chromosomal and non-coding DNA regions.


Assuntos
Autoanticorpos/sangue , Encefalopatias Metabólicas Congênitas/genética , Receptor 1 de Folato/imunologia , Deficiência de Ácido Fólico/genética , Adolescente , Encefalopatias Metabólicas Congênitas/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/diagnóstico , Criança , Pré-Escolar , Consanguinidade , Enzimas Reparadoras do DNA/genética , Diagnóstico Diferencial , Família , Feminino , Receptor 1 de Folato/genética , Receptor 2 de Folato/genética , Ácido Fólico/líquido cefalorraquidiano , Deficiência de Ácido Fólico/líquido cefalorraquidiano , Deficiência de Ácido Fólico/diagnóstico , Humanos , Lactente , Masculino , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polineuropatias/etiologia , Sequenciamento do Exoma , Adulto Jovem
2.
Biochim Biophys Acta ; 1447(1): 100-6, 1999 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-10500249

RESUMO

The CLC family of voltage-gated chloride channels comprises nine members in mammals. CLCN6 and CLCN7 belong to a novel, poorly characterized subbranch of this family. We investigated the genomic organization of the human CLCN6 gene, as well as the murine CLCN6 and CLCN7 genes. The human and murine CLCN6 genes both consist of 23 exons and share a nearly identical genomic structure. The coding region of mouse CLCN7 is composed of 25 exons. Comparison of the genomic organization of CLCN6 and CLCN7 genes shows that just eight introns are located at corresponding cDNA positions. Moreover, no significant gene structure homology to other members of the CLC family could be detected indicating a great structural diversity of mammalian CLC genes.


Assuntos
Canais de Cloreto/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Canais de Cloreto/química , DNA Complementar/química , Éxons , Humanos , Íntrons , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA