Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581115

RESUMO

Trace element selenium (Se) is incorporated as the 21st amino acid, selenocysteine, into selenoproteins through tRNA[Ser]Sec. Selenoproteins act as gatekeepers of redox homeostasis and modulate immune function to effect anti-inflammation and resolution. However, mechanistic underpinnings involving metabolic reprogramming during inflammation and resolution remain poorly understood. Bacterial endotoxin lipopolysaccharide (LPS) activation of murine bone marrow-derived macrophages cultured in the presence or absence of Se (as selenite) was used to examine temporal changes in the proteome and metabolome by multiplexed tandem mass tag-quantitative proteomics, metabolomics, and machine-learning approaches. Kinetic deltagram and clustering analysis indicated that addition of Se led to extensive reprogramming of cellular metabolism upon stimulation with LPS enhancing the pentose phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation, to aid in the phenotypic transition toward alternatively activated macrophages, synonymous with resolution of inflammation. Remodeling of metabolic pathways and consequent metabolic adaptation toward proresolving phenotypes began with Se treatment at 0 h and became most prominent around 8 h after LPS stimulation that included succinate dehydrogenase complex, pyruvate kinase, and sedoheptulokinase. Se-dependent modulation of these pathways predisposed bone marrow-derived macrophages to preferentially increase oxidative phosphorylation to efficiently regulate inflammation and its timely resolution. The use of macrophages lacking selenoproteins indicated that all three metabolic nodes were sensitive to selenoproteome expression. Furthermore, inhibition of succinate dehydrogenase complex with dimethylmalonate affected the proresolving effects of Se by increasing the resolution interval in a murine peritonitis model. In summary, our studies provide novel insights into the role of cellular Se via metabolic reprograming to facilitate anti-inflammation and proresolution.


Assuntos
Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Suscetibilidade a Doenças/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peritonite/tratamento farmacológico , Peritonite/imunologia , Proteoma/metabolismo , Proteômica , Selênio/farmacologia , Selenoproteínas/genética , Selenoproteínas/fisiologia , Succinato Desidrogenase/metabolismo
2.
J Am Soc Mass Spectrom ; 30(7): 1276-1283, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30972724

RESUMO

Selenium (Se) functions as a cellular redox gatekeeper through its incorporation into proteins as the 21st amino acid, selenocysteine (Sec). Supplementation of macrophages with exogenous Se (as sodium selenite) downregulates inflammation and intracellular oxidative stress by effectively restoring redox homeostasis upon challenge with bacterial endotoxin lipopolysaccharide (LPS). Here, we examined the use of a standard Tandem Mass Tag (TMT)-labeling mass spectrometry-based proteomic workflow to quantitate and examine temporal regulation of selenoproteins in such inflamed cells. Se-deficient murine primary bone marrow-derived macrophages (BMDMs) exposed to LPS in the presence or absence of selenite treatment for various time periods (0-20 h) were used to analyze the selenoproteome expression using isobaric labeling and shotgun proteomic workflow. To overcome the challenge of identification of Sec peptides, we used the identification of non-Sec containing peptides downstream of Sec as a reliable evidence of ribosome readthrough indicating efficient decoding of Sec codon. Results indicated a temporal regulation of the selenoproteome with a general increase in their expression in inflamed cells in a Se-dependent manner. Selenow, Gpx1, Msrb1, and Selenom were highly upregulated upon stimulation with LPS when compared to other selenoproteins. Interestingly, Selenow appeared to be one amongst the highly regulated selenoproteins in macrophages that was previously thought to be mainly restricted to myocytes. Collectively, TMT-labeling method of non-Sec peptides offers a reliable method to quantitate and study temporal regulation of selenoproteins; however, further optimization to include Sec-peptides could make this strategy more robust and sensitive compared to other semi-quantitative or qualitative methods. Graphical Abstract.


Assuntos
Macrófagos/química , Selenoproteínas/análise , Sequência de Aminoácidos , Animais , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Proteômica/métodos , Selenoproteínas/imunologia , Espectrometria de Massas em Tandem/métodos
3.
Adv Cancer Res ; 136: 153-172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29054417

RESUMO

Cancer is a complex disease where cancer stem cells (CSCs) maintain unlimited replicative potential, but evade chemotherapy drugs through cellular quiescence. CSCs are able to give rise to bulk tumor cells that have the capability to override antiproliferative signals and evade apoptosis. Numerous pathways are dysregulated in tumor cells, where increased levels of prooxidant reactive oxygen and nitrogen species can lead to localized inflammation to exacerbate all three stages of tumorigenesis: initiation, progression, and metastasis. Modulation of cellular metabolism in tumor cells as well as immune cells in the tumor microenvironment (TME) can impact inflammatory networks. Altering these pathways can potentially serve as a portal for therapy. It is well known that selenium, through selenoproteins, modulates inflammatory pathways in addition to regulating redox homeostasis in cells. Therefore, selenium has the potential to impact the interaction between tumor cells, CSCs, and immune cells. In the sections later, we review the current status of knowledge regarding this interaction, with reference to leukemia stem cells, and the importance of selenium-dependent regulation of inflammation as a potential mechanism to affect the TME and tumor cell survival.


Assuntos
Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Selênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Progressão da Doença , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/metabolismo , Microambiente Tumoral/efeitos dos fármacos
4.
Sci Rep ; 6: 18798, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739611

RESUMO

Medicinally important genus Ocimum harbors a vast pool of chemically diverse metabolites. Current study aims at identifying anti-diabetic candidate compounds from Ocimum species. Major metabolites in O. kilimandscharicum, O. tenuiflorum, O. gratissimum were purified, characterized and evaluated for anti-glycation activity. In vitro inhibition of advanced glycation end products (AGEs) by eugenol was found to be highest. Preliminary biophysical analysis and blind docking studies to understand eugenol-albumin interaction indicated eugenol to possess strong binding affinity for surface exposed lysines. However, binding of eugenol to bovine serum albumin (BSA) did not result in significant change in secondary structure of protein. In vivo diabetic mice model studies with eugenol showed reduction in blood glucose levels by 38% likely due to inhibition of α-glucosidase while insulin and glycated hemoglobin levels remain unchanged. Western blotting using anti-AGE antibody and mass spectrometry detected notably fewer AGE modified peptides upon eugenol treatment both in vivo and in vitro. Histopathological examination revealed comparatively lesser lesions in eugenol-treated mice. Thus, we propose eugenol has dual mode of action in combating diabetes; it lowers blood glucose by inhibiting α-glucosidase and prevents AGE formation by binding to ε-amine group on lysine, protecting it from glycation, offering potential use in diabetic management.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Eugenol/farmacologia , Produtos Finais de Glicação Avançada/sangue , Inibidores de Glicosídeo Hidrolases/farmacologia , Animais , Glicemia , Diabetes Mellitus Experimental/sangue , Avaliação Pré-Clínica de Medicamentos , Eugenol/uso terapêutico , Hemoglobinas Glicadas/metabolismo , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Guanidinas/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Ocimum/química , Extratos Vegetais/farmacologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA