Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiome ; 17(1): 50, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180931

RESUMO

The overarching biological impact of microbiomes on their hosts, and more generally their environment, reflects the co-evolution of a mutualistic symbiosis, generating fitness for both. Knowledge of microbiomes, their systemic role, interactions, and impact grows exponentially. When a research field of importance for planetary health evolves so rapidly, it is essential to consider it from an ethical holistic perspective. However, to date, the topic of microbiome ethics has received relatively little attention considering its importance. Here, ethical analysis of microbiome research, innovation, use, and potential impact is structured around the four cornerstone principles of ethics: Do Good; Don't Harm; Respect; Act Justly. This simple, but not simplistic approach allows ethical issues to be communicative and operational. The essence of the paper is captured in a set of eleven microbiome ethics recommendations, e.g., proposing gut microbiome status as common global heritage, similar to the internationally agreed status of major food crops.

2.
Sci Rep ; 11(1): 3146, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542303

RESUMO

In the past, the potato plant microbiota and rhizosphere have been studied in detail to improve plant growth and fitness. However, less is known about the postharvest potato tuber microbiome and its role in storage stability. The storage stability of potatoes depends on genotype and storage conditions, but the soil in which tubers were grown could also play a role. To understand the ecology and functional role of the postharvest potato microbiota, we planted four potato varieties in five soil types and monitored them until the tubers started sprouting. During storage, the bacterial community of tubers was analysed by next-generation sequencing of the 16S rRNA gene amplicons. The potato tubers exhibited soil-dependent differences in sprouting behaviour. The statistical analysis revealed a strong shift of the tuber-associated bacterial community from harvest to dormancy break. By combining indicator species analysis and a correlation matrix, we predicted associations between members of the bacterial community and tuber sprouting behaviour. Based on this, we identified Flavobacterium sp. isolates, which were able to influence sprouting behaviour by inhibiting potato bud outgrowth.


Assuntos
Bactérias/genética , Flavobacterium/metabolismo , Tubérculos/microbiologia , Preservação Biológica/métodos , Plântula/microbiologia , Solanum tuberosum/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Flavobacterium/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos/genética , Microbiota , Tubérculos/crescimento & desenvolvimento , RNA Bacteriano/classificação , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rizosfera , Plântula/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Solanum tuberosum/crescimento & desenvolvimento
3.
PLoS One ; 14(11): e0223691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31703062

RESUMO

Strong efforts have been made to understand the bacterial communities in potato plants and the rhizosphere. Research has focused on the effect of the environment and plant genotype on bacterial community structures and dynamics, while little is known about the origin and assembly of the bacterial community, especially in potato tubers. The tuber microbiota, however, may be of special interest as it could play an important role in crop quality, such as storage stability. Here, we used 16S rRNA gene amplicon sequencing to study the bacterial communities that colonize tubers of different potato cultivars commonly used in Austrian potato production over three generations and grown in different soils. Statistical analysis of sequencing data showed that the bacterial community of potato tubers has changed over generations and has become more similar to the soil bacterial community, while the impact of the potato cultivar on the bacterial assemblage has lost significance over time. The communities in different tuber parts did not differ significantly, while the soil bacterial community showed significant differences to the tuber microbiota composition. Additionally, the presence of OTUs in subsequent tuber generation points to vertical transmission of a subset of the tuber microbiota. Four OTUs were common to all tuber generations and all potato varieties. In summary, we conclude that the microbiota of potato tubers is recruited from the soil largely independent from the plant variety. Furthermore, the bacterial assemblage in potato tubers consists of bacteria transmitted from one tuber generation to the next and bacteria recruited from the soil.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Solanum tuberosum/microbiologia , Bactérias/genética , DNA Bacteriano/genética , Fenótipo , RNA Ribossômico 16S/genética , Sementes/microbiologia , Análise de Sequência , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA