Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 34(9): 935-44, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20399225

RESUMO

Complementary (c)DNA encoding glutathione peroxidase (GPx) messenger (m)RNA of the tiger shrimp Penaeus monodon was obtained from haemocytes by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) method. The 1321-bp cDNA contained an open reading frame (ORF) of 564bp, a 69-bp 5'-untranslated region (UTR), and a 688-bp 3'-UTR containing a poly A tail and a conserved selenocysteine insertion sequence (SECIS) element. The molecular mass of the deduced amino acid (aa) sequence (188 aa) was 21.05kDa long with an estimated pI of 7.68. It contains a putative selenocysteine residue which is encoded by the unusual stop codon, (190)TGA(192), and forms the active site with residues Glu(75) and Trp(143). Comparison of amino acid sequences showed that tiger shrimp GPx is more closely related to vertebrate GPx1, in accordance with those in Litopenaeus vannamei and Macrobrachium rosenbergii. GPx cDNA was synthesised in lymphoid organ, gills, heart, haemocytes, the hepatopancreas, muscles, and intestines. After injected with either Photobacterium damsela or white spot syndrome virus (WSSV), the respiratory bursts of shrimp significantly increased in order to kill the pathogen, and induced increases in the activities of superoxide dismutase and GPx, and regulation in the expression of cloned GPx mRNA to protect cells against damage from oxidation. The GPx expression significantly increased at stage D(0/1), and then gradually decreased until stage C suggesting that the cloned GPx might play a role in the molt regulation of shrimp.


Assuntos
Infecções por Vírus de DNA/enzimologia , Regulação Enzimológica da Expressão Gênica , Glutationa Peroxidase/metabolismo , Infecções por Bactérias Gram-Negativas/enzimologia , Hemócitos/metabolismo , Photobacterium/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Perfilação da Expressão Gênica , Glutationa Peroxidase/genética , Glutationa Peroxidase/imunologia , Glutationa Peroxidase/isolamento & purificação , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Hemócitos/imunologia , Hemócitos/patologia , Dados de Sequência Molecular , Muda/genética , Penaeidae , Photobacterium/patogenicidade , Filogenia , Explosão Respiratória , Selenocisteína/genética , Selenocisteína/metabolismo , Ativação Transcricional , Vírus da Síndrome da Mancha Branca 1/patogenicidade
2.
BMC Genomics ; 8: 120, 2007 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-17506900

RESUMO

BACKGROUND: White spot syndrome (WSS) is a viral disease that affects most of the commercially important shrimps and causes serious economic losses to the shrimp farming industry worldwide. However, little information is available in terms of the molecular mechanisms of the host-virus interaction. In this study, we used an expressed sequence tag (EST) approach to observe global gene expression changes in white spot syndrome virus (WSSV)-infected postlarvae of Penaeus monodon. RESULTS: Sequencing of the complementary DNA clones of two libraries constructed from normal and WSSV-infected postlarvae produced a total of 15,981 high-quality ESTs. Of these ESTs, 46% were successfully matched against annotated genes in National Center of Biotechnology Information (NCBI) non-redundant (nr) database and 44% were functionally classified using the Gene Ontology (GO) scheme. Comparative EST analyses suggested that, in postlarval shrimp, WSSV infection strongly modulates the gene expression patterns in several organs or tissues, including the hepatopancreas, muscle, eyestalk and cuticle. Our data suggest that several basic cellular metabolic processes are likely to be affected, including oxidative phosphorylation, protein synthesis, the glycolytic pathway, and calcium ion balance. A group of immune-related chitin-binding protein genes is also likely to be strongly up regulated after WSSV infection. A database containing all the sequence data and analysis results is accessible at http://xbio.lifescience.ntu.edu.tw/pm/. CONCLUSION: This study suggests that WSSV infection modulates expression of various kinds of genes. The predicted gene expression pattern changes not only reflect the possible responses of shrimp to the virus infection but also suggest how WSSV subverts cellular functions for virus multiplication. In addition, the ESTs reported in this study provide a rich source for identification of novel genes in shrimp.


Assuntos
Perfilação da Expressão Gênica , Penaeidae/genética , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Actinas/genética , Animais , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Biblioteca Gênica , Glicólise/genética , Lectinas Tipo C/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA