Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 131(10): 1730-1739, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38287700

RESUMO

The aim of this study was to assess whether adding Ca2+ to aggregate or native forms of ß-lactoglobulin alters gut hormone secretion, gastric emptying rates and energy intake in healthy men and women. Fifteen healthy adults (mean ± sd: 9M/6F, age: 24 ± 5 years) completed four trials in a randomised, double-blind, crossover design. Participants consumed test drinks consisting of 30 g of ß-lactoglobulin in a native form with (NATIVE + MINERALS) and without (NATIVE) a Ca2+-rich mineral supplement and in an aggregated form both with (AGGREG + MINERALS) and without the mineral supplement (AGGREG). Arterialised blood was sampled for 120 min postprandially to determine gut hormone concentrations. Gastric emptying was determined using 13C-acetate and 13C-octanoate, and energy intake was assessed with an ad libitum meal at 120 min. A protein × mineral interaction effect was observed for total glucagon-like peptide-1 (GLP-1TOTAL) incremental AUC (iAUC; P < 0·01), whereby MINERALS + AGGREG increased GLP-1TOTAL iAUC to a greater extent than AGGREG (1882 ± 603 v. 1550 ± 456 pmol·l-1·120 min, P < 0·01), but MINERALS + NATIVE did not meaningfully alter the GLP-1 iAUC compared with NATIVE (1669 ± 547 v. 1844 ± 550 pmol·l-1·120 min, P = 0·09). A protein × minerals interaction effect was also observed for gastric emptying half-life (P < 0·01) whereby MINERALS + NATIVE increased gastric emptying half-life compared with NATIVE (83 ± 14 v. 71 ± 8 min, P < 0·01), whereas no meaningful differences were observed between MINERALS + AGGREG v. AGGREG (P = 0·70). These did not result in any meaningful changes in energy intake (protein × minerals interaction, P = 0·06). These data suggest that the potential for Ca2+ to stimulate GLP-1 secretion at moderate protein doses may depend on protein form. This study was registered at clinicaltrials.gov (NCT04659902).


Assuntos
Cálcio da Dieta , Estudos Cross-Over , Ingestão de Energia , Esvaziamento Gástrico , Peptídeo 1 Semelhante ao Glucagon , Lactoglobulinas , Humanos , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Feminino , Adulto , Método Duplo-Cego , Adulto Jovem , Lactoglobulinas/metabolismo , Cálcio da Dieta/administração & dosagem , Suplementos Nutricionais , Período Pós-Prandial , Cálcio/metabolismo
2.
Br J Nutr ; : 1-9, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369333

RESUMO

A high dose of whey protein hydrolysate fed with milk minerals rich in calcium (Capolac®) results in enhanced glucagon-like peptide-1 (GLP-1) concentrations in lean individuals; however, the effect of different calcium doses ingested alongside protein is unknown. The present study assessed the dose response of calcium fed alongside 25 g whey protein hydrolysate on GLP-1 concentrations in individuals with overweight/obesity. Eighteen adults (mean ± sd: 8M/10F, 34 ± 18 years, 28·2 ± 2·9 kgm-2) completed four trials in a randomised, double-blind, crossover design. Participants consumed test solutions consisting of 25 g whey protein hydrolysate (CON), supplemented with 3179 mg (LOW), 6363 mg (MED) or 9547 mg (HIGH) Capolac® on different occasions, separated by at least 48 h. The calcium content of test solutions equated to 65, 892, 1719 and 2547 mg, respectively. Arterialised-venous blood was sampled over 180 min to determine plasma concentrations of GLP-1TOTAL, GLP-17-36amide, insulin, glucose, NEFA, and serum concentrations of calcium and albumin. Ad libitum energy intake was measured at 180 min. Time-averaged incremental AUC (iAUC) for GLP-1TOTAL (pmol·l-1·min-1) did not differ between CON (23 ± 4), LOW (25 ± 6), MED (24 ± 5) and HIGH (24 ± 6). Energy intake (kcal) did not differ between CON (940 ± 387), LOW (884 ± 345), MED (920 ± 334) and HIGH (973 ± 390). Co-ingestion of whey protein hydrolysate with Capolac® does not potentiate GLP-1 release in comparison with whey protein hydrolysate alone. The study was registered at clinical trials (NCT03819972).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA