Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 33(14): 9105-9116, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37246155

RESUMO

The perception of pitch is a fundamental percept, which is mediated by the auditory system, requiring the abstraction of stimulus properties related to the spectro-temporal structure of sound. Despite its importance, there is still debate as to the precise areas responsible for its encoding, which may be due to species differences or differences in the recording measures and choices of stimuli used in previous studies. Moreover, it was unknown whether the human brain contains pitch neurons and how distributed such neurons might be. Here, we present the first study to measure multiunit neural activity in response to pitch stimuli in the auditory cortex of intracranially implanted humans. The stimulus sets were regular-interval noise with a pitch strength that is related to the temporal regularity and a pitch value determined by the repetition rate and harmonic complexes. Specifically, we demonstrate reliable responses to these different pitch-inducing paradigms that are distributed throughout Heschl's gyrus, rather than being localized to a particular region, and this finding was evident regardless of the stimulus presented. These data provide a bridge across animal and human studies and aid our understanding of the processing of a critical percept associated with acoustic stimuli.


Assuntos
Córtex Auditivo , Animais , Humanos , Córtex Auditivo/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica , Mapeamento Encefálico , Potenciais Evocados Auditivos/fisiologia , Percepção Auditiva
3.
J Neurosci ; 42(25): 5034-5046, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35534226

RESUMO

The dynamics of information flow within the auditory cortical hierarchy associated with speech processing and the emergence of hemispheric specialization remain incompletely understood. To study these questions with high spatiotemporal resolution, intracranial recordings in 29 human neurosurgical patients of both sexes were obtained while subjects performed a semantic classification task. Neural activity was recorded from posteromedial portion of Heschl's gyrus (HGPM) and anterolateral portion of Heschl's gyrus (HGAL), planum temporale (PT), planum polare, insula, and superior temporal gyrus (STG). Responses to monosyllabic words exhibited early gamma power increases and a later suppression of alpha power, envisioned to represent feedforward activity and decreased feedback signaling, respectively. Gamma activation and alpha suppression had distinct magnitude and latency profiles. HGPM and PT had the strongest gamma responses with shortest onset latencies, indicating that they are the earliest auditory cortical processing stages. The origin of attenuated top-down influences in auditory cortex, as indexed by alpha suppression, was in STG and HGAL. Gamma responses and alpha suppression were typically larger to nontarget words than tones. Alpha suppression was uniformly greater to target versus nontarget stimuli. Hemispheric bias for words versus tones and for target versus nontarget words, when present, was left lateralized. Better task performance was associated with increased gamma activity in the left PT and greater alpha suppression in HGPM and HGAL bilaterally. The prominence of alpha suppression during semantic classification and its accessibility for noninvasive electrophysiologic studies suggests that this measure is a promising index of auditory cortical speech processing.SIGNIFICANCE STATEMENT Understanding the dynamics of cortical speech processing requires the use of active tasks. This is the first comprehensive intracranial electroencephalography study to examine cortical activity within the superior temporal plane, lateral superior temporal gyrus, and the insula during a semantic classification task. Distinct gamma activation and alpha suppression profiles clarify the functional organization of feedforward and feedback processing within the auditory cortical hierarchy. Asymmetries in cortical speech processing emerge at early processing stages. Relationships between cortical activity and task performance are interpreted in the context of current models of speech processing. Results lay the groundwork for iEEG studies using connectivity measures of the bidirectional information flow within the auditory processing hierarchy.


Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fala , Percepção da Fala/fisiologia
4.
Cardiovasc Revasc Med ; 40: 64-68, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34774419

RESUMO

BACKGROUND: Recent analyses of the volume-outcome relationship for percutaneous coronary intervention (PCI) have suggested a less robust association than previously reported. It is unknown if novel factors such as lifetime operator experience influence this relationship. OBJECTIVES: To assess the relationship between annual volumes and outcomes for PCI and determine whether lifetime operator experience modulates the association. METHODS: Annual PCI volumes for facilities and operators within the Veterans Affairs Healthcare System and their relationship with 30-day mortality following PCI were described. The influence of operator lifetime experience on the volume-outcome relationship was assessed. Hierarchical logistic regression was used to adjust for patient and procedural factors. RESULTS: 57,608 PCIs performed from 2013 to 2018 by 382 operators and 63 institutions were analyzed. Operator annualized PCI volume averaged 47.6 (standard deviation [SD] 49.1) and site annualized volume averaged 189.2 (SD 105.2). Median operator experience was 9.0 years (interquartile range [IQR] 4.0-15.0). There was no independent relationship between operator annual volume, institutional volume, or operator lifetime experience with 30-day mortality (p > 0.10). However, the interaction between operator volume and lifetime experience was associated with a marginal decrease in mortality (odds ratio [OR] 0.9998, 95% CI 0.9996-0.9999). CONCLUSIONS: There were no significant associations between facility or operator-level procedural volume and 30-day mortality following PCI in a nationally integrated healthcare system. There was a marginal association between the interaction of operator lifetime experience, operator annual volume, and 30-day mortality that is unlikely to be clinically relevant, though does suggest an opportunity to explore novel factors that may influence the volume-outcome relationship.


Assuntos
Intervenção Coronária Percutânea , Veteranos , Mortalidade Hospitalar , Humanos , Razão de Chances , Intervenção Coronária Percutânea/efeitos adversos , Resultado do Tratamento
5.
Cereb Cortex ; 31(2): 1131-1148, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33063098

RESUMO

The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.


Assuntos
Estimulação Acústica/métodos , Eletroencefalografia/métodos , Desempenho Psicomotor/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Adulto Jovem
6.
World Neurosurg ; 137: e634-e641, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32112934

RESUMO

BACKGROUND: Chronic midline low back pain is the number one reason for disability in the United States despite the prolific use of medical and surgical interventions. Notwithstanding the widespread use of epidural spinal cord stimulators (SCSs), there remains a large portion of the population with inadequate pain control thought to be because of the limited volume of stimulated neural tissue. Intradural SCSs represent an underexplored alternative strategy with the potential to improve selectivity, power efficiency, and efficacy. We studied and carried out development of an intradural form of an SCS. Herein we present the findings of in vivo testing of a prototype intradural SCS in a porcine model. METHODS: Six female juvenile pigs underwent surgical investigation. One control animal underwent a laminectomy only, whereas the 5 other animals had implantation of an intradural SCS prototype. One of the prototypes was fully wired to enable acute stimulation and concurrent electromyographic recordings. All animals underwent terminal surgery 3 months postimplantation, with harvesting of the spinal column. Imaging (microcomputed tomography scan) and histopathologic examinations were subsequently performed. RESULTS: All animals survived implantation without evidence of neurologic deficits or infection. Postmortem imaging and histopathologic examination of the spinal column revealed no evidence of spinal cord damage, cerebrospinal fluid fistula formation, abnormal bony overgrowth, or dural defect. Viable dura was present between the intra- and extradural plates of the device. Electromyographic recordings revealed evoked motor units from the stimulator. CONCLUSIONS: Chronically implanted intradural device in the porcine model demonstrated safety and feasibility for translation into humans.


Assuntos
Terapia por Estimulação Elétrica/métodos , Neuroestimuladores Implantáveis , Dor Lombar/terapia , Medula Espinal/cirurgia , Animais , Feminino , Laminectomia , Suínos
7.
J Neurosci ; 39(44): 8679-8689, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31533976

RESUMO

The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl's gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however, their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (4 female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.SIGNIFICANCE STATEMENT To understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl's gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.


Assuntos
Ritmo alfa , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Potenciais Evocados Auditivos , Feminino , Ritmo Gama , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Hear Res ; 371: 53-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500619

RESUMO

Understanding cortical processing of spectrally degraded speech in normal-hearing subjects may provide insights into how sound information is processed by cochlear implant (CI) users. This study investigated electrocorticographic (ECoG) responses to noise-vocoded speech and related these responses to behavioral performance in a phonemic identification task. Subjects were neurosurgical patients undergoing chronic invasive monitoring for medically refractory epilepsy. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands). ECoG responses were obtained from Heschl's gyrus (HG) and superior temporal gyrus (STG), and were examined within the high gamma frequency range (70-150 Hz). All subjects performed at chance accuracy with speech degraded to 1 and 2 spectral bands, and at or near ceiling for clear speech. Inter-subject variability was observed in the 3- and 4-band conditions. High gamma responses in posteromedial HG (auditory core cortex) were similar for all vocoded conditions and clear speech. A progressive preference for clear speech emerged in anterolateral segments of HG, regardless of behavioral performance. On the lateral STG, responses to all vocoded stimuli were larger in subjects with better task performance. In contrast, both behavioral and neural responses to clear speech were comparable across subjects regardless of their ability to identify degraded stimuli. Findings highlight differences in representation of spectrally degraded speech across cortical areas and their relationship to perception. The results are in agreement with prior non-invasive results. The data provide insight into the neural mechanisms associated with variability in perception of degraded speech and potentially into sources of such variability in CI users.


Assuntos
Córtex Auditivo/fisiologia , Percepção da Fala/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/anatomia & histologia , Implantes Cocleares , Eletrocorticografia , Feminino , Ritmo Gama/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fonética , Espectrografia do Som , Acústica da Fala , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologia , Teste de Sequência Alfanumérica , Adulto Jovem
9.
J Neurosci Methods ; 261: 135-54, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26711370

RESUMO

BACKGROUND: Windowed Fourier decompositions (WFD) are widely used in measuring stationary and non-stationary spectral phenomena and in describing pairwise relationships among multiple signals. Although a variety of WFDs see frequent application in electrophysiological research, including the short-time Fourier transform, continuous wavelets, bandpass filtering and multitaper-based approaches, each carries certain drawbacks related to computational efficiency and spectral leakage. This work surveys the advantages of a WFD not previously applied in electrophysiological settings. NEW METHODS: A computationally efficient form of complex demodulation, the demodulated band transform (DBT), is described. RESULTS: DBT is shown to provide an efficient approach to spectral estimation with minimal susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-stationary narrowband noise. COMPARISON WITH EXISTING METHODS: A detailed comparison with alternative WFDs is offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is shown to perform favorably in combining computational efficiency with minimal introduction of spectral leakage. CONCLUSION: DBT is ideally suited to efficient estimation of both stationary and non-stationary spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These qualities are broadly desirable in many settings.


Assuntos
Processamento de Sinais Assistido por Computador , Estimulação Acústica , Algoritmos , Artefatos , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Encéfalo/cirurgia , Eletrocorticografia/métodos , Eletrodos Implantados , Análise de Fourier , Humanos
10.
J Neurophysiol ; 109(5): 1283-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23236002

RESUMO

Evidence regarding the functional subdivisions of human auditory cortex has been slow to converge on a definite model. In part, this reflects inadequacies of current understanding of how the cortex represents temporal information in acoustic signals. To address this, we investigated spatiotemporal properties of auditory responses in human posterolateral superior temporal (PLST) gyrus to acoustic click-train stimuli using intracranial recordings from neurosurgical patients. Subjects were patients undergoing chronic invasive monitoring for refractory epilepsy. The subjects listened passively to acoustic click-train stimuli of varying durations (160 or 1,000 ms) and rates (4-200 Hz), delivered diotically via insert earphones. Multicontact subdural grids placed over the perisylvian cortex recorded intracranial electrocorticographic responses from PLST and surrounding areas. Analyses focused on averaged evoked potentials (AEPs) and high gamma (70-150 Hz) event-related band power (ERBP). Responses to click trains featured prominent AEP waveforms and increases in ERBP. The magnitude of AEPs and ERBP typically increased with click rate. Superimposed on the AEPs were frequency-following responses (FFRs), most prominent at 50-Hz click rates but still detectable at stimulus rates up to 200 Hz. Loci with the largest high gamma responses on PLST were often different from those sites that exhibited the strongest FFRs. The data indicate that responses of non-core auditory cortex of PLST represent temporal stimulus features in multiple ways. These include an isomorphic representation of periodicity (as measured by the FFR), a representation based on increases in non-phase-locked activity (as measured by high gamma ERBP), and spatially distributed patterns of activity.


Assuntos
Córtex Auditivo/fisiopatologia , Ondas Encefálicas , Epilepsia/fisiopatologia , Lobo Temporal/fisiopatologia , Estimulação Acústica , Adulto , Potenciais Evocados Auditivos , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade
11.
J Neurosci ; 29(49): 15564-74, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20007480

RESUMO

Speech comprehension relies on temporal cues contained in the speech envelope, and the auditory cortex has been implicated as playing a critical role in encoding this temporal information. We investigated auditory cortical responses to speech stimuli in subjects undergoing invasive electrophysiological monitoring for pharmacologically refractory epilepsy. Recordings were made from multicontact electrodes implanted in Heschl's gyrus (HG). Speech sentences, time compressed from 0.75 to 0.20 of natural speaking rate, elicited average evoked potentials (AEPs) and increases in event-related band power (ERBP) of cortical high-frequency (70-250 Hz) activity. Cortex of posteromedial HG, the presumed core of human auditory cortex, represented the envelope of speech stimuli in the AEP and ERBP. Envelope following in ERBP, but not in AEP, was evident in both language-dominant and -nondominant hemispheres for relatively high degrees of compression where speech was not comprehensible. Compared to posteromedial HG, responses from anterolateral HG-an auditory belt field-exhibited longer latencies, lower amplitudes, and little or no time locking to the speech envelope. The ability of the core auditory cortex to follow the temporal speech envelope over a wide range of speaking rates leads us to conclude that such capacity in itself is not a limiting factor for speech comprehension.


Assuntos
Córtex Auditivo/fisiologia , Percepção da Fala/fisiologia , Fala , Estimulação Acústica , Adulto , Córtex Auditivo/fisiopatologia , Epilepsia/fisiopatologia , Potenciais Evocados Auditivos , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Espectrografia do Som , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA