Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 28(5): 1036-44, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25835984

RESUMO

Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 µM soman was detoxified within 30 min when supplemented with 0.5 µM Y337A/F338A AChE and 100 µM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.


Assuntos
Acetilcolinesterase/genética , Acetilcolinesterase/farmacologia , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Soman/toxicidade , Acetilcolinesterase/metabolismo , Animais , Humanos , Camundongos , Modelos Moleculares , Mutação Puntual
2.
Chem Biol Interact ; 203(1): 67-71, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22975155

RESUMO

A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.


Assuntos
Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Oximas/farmacologia , Acetamidas/química , Acetamidas/farmacologia , Acetilcolinesterase/química , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/química , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Cinética , Modelos Moleculares , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Oximas/química , Paraoxon/toxicidade , Sarina/toxicidade
3.
Chem Biol Interact ; 203(1): 77-80, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22960624

RESUMO

Organophosphates (OP) inhibit acetylcholinesterase (AChE, EC 3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Organofosfatos/toxicidade , Oximas/farmacologia , Acetilcolinesterase/genética , Barreira Hematoencefálica/efeitos dos fármacos , Domínio Catalítico/genética , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Cinética , Estrutura Molecular , Mutagênese Sítio-Dirigida , Oximas/química , Oximas/farmacocinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
4.
J Biol Chem ; 287(15): 11798-809, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22343626

RESUMO

We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, (1)H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.


Assuntos
Acetamidas/química , Antídotos/química , Reativadores da Colinesterase/química , Oximas/química , Acetamidas/farmacocinética , Acetamidas/toxicidade , Acetilcolinesterase , Animais , Antídotos/farmacocinética , Antídotos/toxicidade , Encéfalo/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacocinética , Reativadores da Colinesterase/toxicidade , Avaliação Pré-Clínica de Medicamentos/normas , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Dose Letal Mediana , Camundongos , Estrutura Molecular , Organofosfatos/química , Organofosfatos/toxicidade , Oximas/farmacocinética , Oximas/toxicidade , Ligação Proteica , Padrões de Referência , Relação Estrutura-Atividade , Distribuição Tecidual
5.
J Biol Chem ; 281(14): 9667-76, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16434405

RESUMO

A mutation linked to autistic spectrum disorders encodes an Arg to Cys replacement in the C-terminal portion of the extracellular domain of neuroligin-3. The solvent-exposed Cys causes virtually complete retention of the protein in the endoplasmic reticulum when the protein is expressed in transfected cells. An identical Cys substitution was reported for butyrylcholinesterase through genotyping patients with post-succinylcholine apnea. Neuroligin, butyrylcholinesterase, and acetylcholinesterase are members of the alpha,beta-hydrolase fold family of proteins sharing sequence similarity and common tertiary structures. Although these proteins have distinct oligomeric assemblies and cellular dispositions, homologous Arg residues in neuroligin-3 (Arg-451), in butyrylcholinesterase (Arg-386), and in acetylcholinesterase (Arg-395) are conserved in all studied mammalian species. To examine whether an homologous Arg to Cys mutation affects related proteins similarly despite their differing capacities to oligomerize, we inserted homologous mutations in the acetylcholinesterase and butyrylcholinesterase cDNAs. Using confocal fluorescence microscopy and analysis of oligosaccharide processing, we find that the homologous Arg to Cys mutation also results in endoplasmic reticulum retention of the two cholinesterases. Small quantities of mutated acetylcholinesterase exported from the cell retain activity but show a greater K(m), a much smaller k(cat), and altered substrate inhibition. The nascent proteins associate with chaperones during processing, but the mutation presumably restricts processing through the endoplasmic reticulum and Golgi apparatus, because of local protein misfolding and inability to oligomerize. The mutation may alter the capacity of these proteins to dissociate from their chaperone prior to oligomerization and processing for export.


Assuntos
Acetilcolinesterase/genética , Transtorno Autístico/genética , Butirilcolinesterase/genética , Retículo Endoplasmático/fisiologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Dobramento de Proteína , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Moléculas de Adesão Celular Neuronais , DNA Complementar , Proteínas de Membrana/metabolismo , Microscopia Confocal , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA