Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37628636

RESUMO

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Autofagia/genética , Mitocôndrias/genética , Metabolismo Energético
2.
Sci Rep ; 10(1): 7195, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346080

RESUMO

Invasive motor Cortex Stimulation (iMCS) was introduced in the 1990's for the treatment of chronic neuropathic orofacial pain (CNOP), although its effectiveness remains doubtful. However, CNOP is known to be a heterogeneous group of orofacial pain disorders, which can lead to different responses to iMCS. Therefore, this paper investigated (1) whether the effectiveness of iMCS is significantly different among different CNOP disorders and (2) whether other confounding factors can be impacting iMCS results in CNOP. A systematic review and meta-analysis using a linear mixed-model was performed. Twenty-three papers were included, totaling 140 CNOP patients. Heterogeneity of the studies showed to be 55.8%. A visual analogue scale (VAS) measured median pain relief of 66.5% (ranging from 0-100%) was found. Linear mixed-model analysis showed that patients suffering from trigeminal neuralgia responded significantly more favorable to iMCS than patients suffering from dysfunctional pain syndromes (p = 0.030). Also, patients suffering from CNOP caused by (supra)nuclear lesions responded marginally significantly better to iMCS than patients suffering from CNOP due to trigeminal nerve lesions (p = 0.049). No other confounding factors were elucidated. This meta-analysis showed that patients suffering from trigeminal neuralgia and patients suffering from (supra)nuclear lesions causing CNOP responded significantly more favorable than others on iMCS. No other confounding factors were found relevant.


Assuntos
Dor Crônica , Terapia por Estimulação Elétrica , Dor Facial , Córtex Motor/fisiopatologia , Neuralgia , Neuralgia do Trigêmeo , Dor Crônica/fisiopatologia , Dor Crônica/terapia , Dor Facial/fisiopatologia , Dor Facial/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/fisiopatologia , Neuralgia/terapia , Síndrome , Neuralgia do Trigêmeo/fisiopatologia , Neuralgia do Trigêmeo/terapia
3.
J Pain ; 20(9): 1015-1026, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30771593

RESUMO

Implantable motor cortex stimulation (iMCS) has been performed for >25 years to treat various intractable pain syndromes. Its effectiveness is highly variable and, although various studies revealed predictive variables, none of these were found repeatedly. This study uses neural network analysis (NNA) to identify predictive factors of iMCS treatment for intractable pain. A systematic review provided a database of patient data on an individual level of patients who underwent iMCS to treat refractory pain between 1991 and 2017. Responders were defined as patients with a pain relief of >40% as measured by a numerical rating scale (NRS) score. NNA was carried out to predict the outcome of iMCS and to identify predictive factors that impacted the outcome of iMCS. The outcome prediction value of the NNA was expressed as the mean accuracy, sensitivity, and specificity. The NNA furthermore provided the mean weight of predictive variables, which shows the impact of the predictive variable on the prediction. The mean weight was converted into the mean relative influence (M), a value that varies between 0 and 100%. A total of 358 patients were included (202 males [56.4%]; mean age, 54.2 ±13.3 years), 201 of whom were responders to iMCS. NNA had a mean accuracy of 66.3% and a sensitivity and specificity of 69.8% and 69.4%, respectively. NNA further identified 6 predictive variables that had a relatively high M: 1) the sex of the patient (M = 19.7%); 2) the origin of the lesion (M = 15.1%); 3) the preoperative numerical rating scale score (M = 9.2%); 4) preoperative use of repetitive transcranial magnetic stimulation (M = 7.3%); 5) preoperative intake of opioids (M = 7.1%); and 6) the follow-up period (M = 13.1%). The results from the present study show that these 6 predictive variables influence the outcome of iMCS and that, based on these variables, a fair prediction model can be built to predict outcome after iMCS surgery. PERSPECTIVE: The presented NNA analyzed the functioning of computational models and modeled nonlinear statistical data. Based on this NNA, 6 predictive variables were identified that are suggested to be of importance in the improvement of future iMCS to treat chronic pain.


Assuntos
Dor Crônica/terapia , Córtex Motor/fisiopatologia , Manejo da Dor , Dor Intratável/terapia , Dor Crônica/fisiopatologia , Terapia por Estimulação Elétrica , Humanos , Medição da Dor , Dor Intratável/fisiopatologia , Prognóstico
4.
J Inherit Metab Dis ; 41(4): 585-596, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29594645

RESUMO

Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.


Assuntos
Mitocôndrias/patologia , Transtornos de Estresse Pós-Traumáticos/genética , Alostase , Medo , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Hidrocortisona , Inflamação , Acontecimentos que Mudam a Vida , Plasticidade Neuronal , Transtornos de Estresse Pós-Traumáticos/terapia
5.
Nature ; 537(7618): 97-101, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27556938

RESUMO

Serotonin (also known as 5-hydroxytryptamine (5-HT)) is a neurotransmitter that has an essential role in the regulation of emotion. However, the precise circuits have not yet been defined through which aversive states are orchestrated by 5-HT. Here we show that 5-HT from the dorsal raphe nucleus (5-HTDRN) enhances fear and anxiety and activates a subpopulation of corticotropin-releasing factor (CRF) neurons in the bed nucleus of the stria terminalis (CRFBNST) in mice. Specifically, 5-HTDRN projections to the BNST, via actions at 5-HT2C receptors (5-HT2CRs), engage a CRFBNST inhibitory microcircuit that silences anxiolytic BNST outputs to the ventral tegmental area and lateral hypothalamus. Furthermore, we demonstrate that this CRFBNST inhibitory circuit underlies aversive behaviour following acute exposure to selective serotonin reuptake inhibitors (SSRIs). This early aversive effect is mediated via the corticotrophin-releasing factor type 1 receptor (CRF1R, also known as CRHR1), given that CRF1R antagonism is sufficient to prevent acute SSRI-induced enhancements in aversive learning. These results reveal an essential 5-HTDRN→CRFBNST circuit governing fear and anxiety, and provide a potential mechanistic explanation for the clinical observation of early adverse events to SSRI treatment in some patients with anxiety disorders.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Medo/fisiologia , Serotonina/metabolismo , Tálamo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Ansiedade/induzido quimicamente , Transtornos de Ansiedade/induzido quimicamente , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Medo/efeitos dos fármacos , Feminino , Fluoxetina/efeitos adversos , Fluoxetina/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Optogenética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tálamo/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
6.
Bioelectromagnetics ; 37(7): 433-43, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27553635

RESUMO

There is still uncertainty whether extremely low frequency electromagnetic fields (ELF-EMF) can induce health effects like immunomodulation. Despite evidence obtained in vitro, an unambiguous association has not yet been established in vivo. Here, mice were exposed to ELF-EMF for 1, 4, and 24 h/day in a short-term (1 week) and long-term (15 weeks) set-up to investigate whole body effects on the level of stress regulation and immune response. ELF-EMF signal contained multiple frequencies (20-5000 Hz) and a magnetic flux density of 10 µT. After exposure, blood was analyzed for leukocyte numbers (short-term and long-term) and adrenocorticotropic hormone concentration (short-term only). Furthermore, in the short-term experiment, stress-related parameters, corticotropin-releasing hormone, proopiomelanocortin (POMC) and CYP11A1 gene-expression, respectively, were determined in the hypothalamic paraventricular nucleus, pituitary, and adrenal glands. In the short-term but not long-term experiment, leukocyte counts were significantly higher in the 24 h-exposed group compared with controls, mainly represented by increased neutrophils and CD4 ± lymphocytes. POMC expression and plasma adrenocorticotropic hormone were significantly lower compared with unexposed control mice. In conclusion, short-term ELF-EMF exposure may affect hypothalamic-pituitary-adrenal axis activation in mice. Changes in stress hormone release may explain changes in circulating leukocyte numbers and composition. Bioelectromagnetics. 37:433-443, 2016. © 2016 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/efeitos da radiação , Contagem de Leucócitos , Sistema Hipófise-Suprarrenal/citologia , Sistema Hipófise-Suprarrenal/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Animais , Camundongos , Fatores de Tempo
7.
J Comp Neurol ; 519(8): 1413-34, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21452224

RESUMO

The eponymous term nucleus of Edinger-Westphal (EW) has come to be used to describe two juxtaposed and somewhat intermingled cell groups of the midbrain that differ dramatically in their connectivity and neurochemistry. On one hand, the classically defined EW is the part of the oculomotor complex that is the source of the parasympathetic preganglionic motoneuron input to the ciliary ganglion (CG), through which it controls pupil constriction and lens accommodation. On the other hand, EW is applied to a population of centrally projecting neurons involved in sympathetic, consumptive, and stress-related functions. This terminology problem arose because the name EW has historically been applied to the most prominent cell collection above or between the somatic oculomotor nuclei (III), an assumption based on the known location of the preganglionic motoneurons in monkeys. However, in many mammals, the nucleus designated as EW is not made up of cholinergic, preganglionic motoneurons supplying the CG and instead contains neurons using peptides, such as urocortin 1, with diverse central projections. As a result, the literature has become increasingly confusing. To resolve this problem, we suggest that the term EW be supplemented with terminology based on connectivity. Specifically, we recommend that 1) the cholinergic, preganglionic neurons supplying the CG be termed the Edinger-Westphal preganglionic (EWpg) population and 2) the centrally projecting, peptidergic neurons be termed the Edinger-Westphal centrally projecting (EWcp) population. The history of this nomenclature problem and the rationale for our solutions are discussed in this review.


Assuntos
Mesencéfalo/anatomia & histologia , Animais , Fibras Autônomas Pré-Ganglionares , Comportamento Aditivo , Ingestão de Alimentos , Humanos , Mesencéfalo/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Urocortinas/metabolismo
8.
Eur J Neurosci ; 32(12): 2082-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21143662

RESUMO

This review focuses on the plasticity of the regulation of a particular neuroendocrine transducer cell, the melanotrope cell in the pituitary pars intermedia of the amphibian Xenopus laevis. This cell type is a suitable model to study the relationship between various external regulatory inputs and the secretion of an adaptive endocrine message, in this case the release of α-melanophore-stimulating hormone, which activates skin melanophores to darken when the animal is placed on a dark background. Information about the environmental conditions is processed by various brain centres, in the hypothalamus and elsewhere, that eventually control the activity of the melanotrope cell regarding hormone production and secretion. The review discusses the roles of these hypothalamic and extrahypothalamic nuclei, their neurochemical messengers acting on the melanotrope, and the external stimuli they mediate to control melanotrope cell functioning.


Assuntos
Melanotrofos/citologia , Melanotrofos/fisiologia , Plasticidade Neuronal/fisiologia , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Melanóforos/metabolismo , Hipófise/citologia , Transdução de Sinais/fisiologia , alfa-MSH/metabolismo
9.
J Pain ; 11(10): 930-40, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20418180

RESUMO

UNLABELLED: The doublecortin-like kinase (DCLK) gene is crucially involved in neuronal plasticity and microtubule-guided retrograde transport of signaling molecules. We have explored the possibility that DCLK is involved in pain-induced signaling events in adult male Wistar rats. Our results show that both DCLK-short and DCLK-long splice variants are present in the cell body and proximal dendrites of neurons in stress-related nuclei, ie, the paraventricular nucleus of the hypothalamus (PVN) and the non-preganglionic Edinger-Westphal nucleus (npEW) in the rostroventral periaqueductal grey. We found that DCLK-long but not DCLK-short is phosphorylated in its serine/proline-rich domain. Furthermore, we demonstrate that phosphorylation of DCLK-long in the npEW is increased by acute pain, whereas DCLK-long phosphorylation in the PVN remains unaffected. This is the first report revealing that DCLK isoforms in the PVN and npEW occur in the adult mammalian brain and that pain differentially affects DCLK-long-mediated neuronal plasticity in these 2 stress-sensitive brain centers. PERSPECTIVE: Pain is a burden for society and the individual, and although the mechanisms underlying pain are relatively well known, its treatment remains difficult and incomplete. Pain stress can lead to diseases like chronic pain and depression. The differential DCLK-phosphorylation in stress-sensitive brain areas is a potential novel therapeutic target in pain research.


Assuntos
Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Dor/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Doença Aguda , Animais , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Hipotálamo/citologia , Hipotálamo/enzimologia , Masculino , Mesencéfalo/enzimologia , Plasticidade Neuronal/genética , Nervo Oculomotor/enzimologia , Nervo Oculomotor/metabolismo , Nervo Oculomotor/fisiopatologia , Dor/enzimologia , Dor/fisiopatologia , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Fosforilação/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Wistar , Estresse Fisiológico/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA