Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079744

RESUMO

Dietary calcium intake is a modifiable, lifestyle factor that can affect bone health and the risk of fracture. The diurnal rhythm of bone remodelling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of daily, bed-time ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or control (CON), for 24 weeks, on serum biomarkers of bone resorption (C-terminal telopeptide of type I collagen, CTX) and formation (serum pro-collagen type 1 N-terminal propeptide, P1NP), and site-specific aerial bone mineral density (BMD), trabecular bone score (TBS), in postmenopausal women with osteopenia. The MBPM supplement increased mean daily energy, protein, and calcium intake, by 11, 30, and 107%, respectively. 24-week supplementation with MBPM decreased CTX by 23%, from 0.547 (0.107) to 0.416 (0.087) ng/mL (p < 0.001) and P1NP by 17%, from 60.6 (9.1) to 49.7 (7.2) µg/L (p < 0.001). Compared to CON, MBPM induced a significantly greater reduction in serum CTX (mean (CI95%); −9 (8.6) vs. −23 (8.5)%, p = 0.025 but not P1NP −19 (8.8) vs. −17 (5.2)%, p = 0.802). No significant change in TBS, AP spine or dual femur aerial BMD was observed for CON or MBPM. This study demonstrates the potential benefit of bed-time ingestion of a calcium-fortified, milk-based protein matrix on homeostatic bone remodelling but no resultant treatment effect on site-specific BMD in postmenopausal women with osteopenia.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose Pós-Menopausa , Animais , Biomarcadores , Densidade Óssea , Remodelação Óssea , Cálcio/farmacologia , Cálcio da Dieta/farmacologia , Colágeno Tipo I , Ingestão de Alimentos , Feminino , Humanos , Leite , Proteínas do Leite/farmacologia , Pós-Menopausa
2.
Nutrients ; 13(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34444928

RESUMO

Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes' economy as well as the performance effects in elite groups.


Assuntos
Beta vulgaris , Carboidratos da Dieta/administração & dosagem , Suplementos Nutricionais , Sucos de Frutas e Vegetais , Caminhada/fisiologia , Adulto , Atletas , Humanos , Masculino , Oxirredução , Consumo de Oxigênio
3.
Int J Sport Nutr Exerc Metab ; 31(6): 466-474, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453013

RESUMO

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.


Assuntos
Carboidratos da Dieta , Músculo Esquelético , Glicemia , Método Duplo-Cego , Ingestão de Alimentos , Exercício Físico , Glicogênio , Humanos , Insulina , Masculino , Resistência Física
4.
Nutrients ; 12(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245197

RESUMO

BACKGROUND: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). METHODS: In a double-blind randomised parallel group design, 16 resistance-trained men aged 18 to 35 years completed a 7-d RT protocol, consisting of three lower-body RT sessions on non-consecutive days. Participants consumed a controlled diet (146 kJ·kg-1·d-1, 1.7 g·kg-1·d-1 protein) with either a whey protein supplement or an isonitrogenous control (0.33 g·kg-1·d-1 protein). To measure myoPS, 400 ml of deuterium oxide (D2O) (70 atom %) was ingested the day prior to starting the study and m. vastus lateralis biopsies were taken before and after RT-intervention. Myofibrillar fractional synthetic rate (myoFSR) was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Pyr-IRMS). Muscle recovery parameters (i.e., countermovement jump height, isometric-squat force, muscle soreness and serum creatine kinase) were assessed daily. RESULTS: MyoFSR PRE was 1.6 (0.2) %∙d-1 (mean (SD)). Whey protein supplementation had no effect on myoFSR (p = 0.771) or any recovery parameter (p = 0.390-0.989). CONCLUSIONS: Over an intense 7-d RT protocol, 0.33 g·kg-1·d-1 of supplemental whey protein does not enhance day-to-day measures of myoPS or postexercise recovery in resistance-trained men.


Assuntos
Suplementos Nutricionais , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Biossíntese de Proteínas , Treinamento Resistido , Proteínas do Soro do Leite/administração & dosagem , Adolescente , Adulto , Biomarcadores , Expressão Gênica , Humanos , Masculino , Força Muscular , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA