Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nutrients ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986034

RESUMO

Cardiovascular complications are accompanied by life-threatening complications and represent the major cause of death in patients with chronic kidney disease (CKD). Magnesium is important for the physiology of cardiac function, and its deficiency is common in CKD. In the present study, we investigated the impact of oral magnesium carbonate supplementation on cardiac function in an experimental model of CKD induced in Wistar rats by an adenine diet. Echocardiographic analyses revealed restoration of impaired left ventricular cardiac function in animals with CKD. Cardiac histology and real-time PCR confirmed a high amount of elastin protein and increased collagen III expression in CKD rats supplemented with dietary magnesium as compared with CKD controls. Both structural proteins are crucial in maintaining cardiac health and physiology. Aortic calcium content increased in CKD as compared with tissue from control animals. Magnesium supplementation numerically lowered the increases in aortic calcium content as it remained statistically unchanged, compared with controls. In summary, the present study provides evidence for an improvement in cardiovascular function and aortic wall integrity in a rat model of CKD by magnesium, as evidenced by echocardiography and histology.


Assuntos
Insuficiência Renal Crônica , Uremia , Ratos , Animais , Magnésio , Cálcio , Elastina , Ratos Wistar , Uremia/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações
2.
Redox Biol ; 56: 102459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099852

RESUMO

AIMS: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as 'uremic cardiomyopathy'. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. METHODS AND RESULTS: CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE-/-, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. CONCLUSION: This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional "hits" are required to induce uremic cardiomyopathy. TRANSLATIONAL PERSPECTIVE: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as 'uremic cardiomyopathy'. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional "hits" are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies.


Assuntos
Cardiomiopatias , Insuficiência Renal Crônica , Adenina , Animais , Anti-Inflamatórios , Apolipoproteínas E , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo
3.
Kidney Int ; 101(2): 338-348, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774554

RESUMO

Chronic kidney disease (CKD) is accompanied with extensive cardiovascular calcification, in part correlating with functional vitamin K deficiency. Here, we sought to determine causes for vitamin K deficiency beyond reduced dietary intake. Initially, vitamin K uptake and distribution into circulating lipoproteins after a single administration of vitamin K1 plus K2 (menaquinone 4 and menaquinone 7, respectively) was determined in patients on dialysis therapy and healthy individuals. The patients incorporated very little menaquinone 7 but more menaquinone 4 into high density lipoprotein (HDL) and low-density lipoprotein particles than did healthy individuals. In contrast to healthy persons, HDL particles from the patients could not be spiked with menaquinone 7 in vitro and HDL uptake was diminished in osteoblasts. A reduced carboxylation activity (low vitamin K activity) of uremic HDL particles spiked with menaquinone 7 vs. that of controls was confirmed in a bioassay using human primary vascular smooth muscle cells. Kidney menaquinone 4 tissue levels were reduced in 5/6-nephrectomized versus sham-operated C57BL/6 mice after four weeks of a vitamin K rich diet. From the analyzed enzymes involved in vitamin K metabolism, kidney HMG-CoA reductase protein was reduced in both rats and patients with CKD. In a trial on the efficacy and safety of atorvastatin in 1051 patients with type 2 diabetes receiving dialysis therapy, no pronounced vitamin K deficiency was noted. However, the highest levels of PIVKA-II (biomarker of subclinical vitamin K deficiency) were noted when a statin was combined with a proton pump inhibitor. Thus, profound disturbances in lipoprotein mediated vitamin K transport and metabolism in uremia suggest that menaquinone 7 supplementation to patients on dialysis therapy has reduced efficacy.


Assuntos
Insuficiência Renal Crônica , Deficiência de Vitamina K , Vitamina K/metabolismo , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Insuficiência Renal Crônica/metabolismo , Distribuição Tecidual , Vitamina K/uso terapêutico , Vitamina K 1/metabolismo , Vitamina K 1/uso terapêutico , Vitamina K 2/metabolismo , Vitamina K 2/uso terapêutico , Deficiência de Vitamina K/complicações , Deficiência de Vitamina K/metabolismo
4.
Nephrol Dial Transplant ; 37(4): 652-662, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34718756

RESUMO

BACKGROUND: Hyperphosphataemia is strongly associated with cardiovascular disease and mortality. Recently, phosphate binders (PBs), which are used to bind intestinal phosphate, have been shown to bind vitamin K, thereby potentially aggravating vitamin K deficiency. This vitamin K binding by PBs may offset the beneficial effects of phosphate reduction in reducing vascular calcification (VC). Here we assessed whether combining PBs with vitamin K2 supplementation inhibits VC. METHODS: We performed 3/4 nephrectomy in rats, after which warfarin was given for 3 weeks to induce vitamin K deficiency. Next, animals were fed a high phosphate diet in the presence of low or high vitamin K2 and were randomized to either control or one of four different PBs for 8 weeks. The primary outcome was the amount of thoracic and abdominal aorta VC measured by high-resolution micro-computed tomography (µCT). Vitamin K status was measured by plasma MK7 levels and immunohistochemically analysed in vasculature using uncarboxylated matrix Gla protein (ucMGP) specific antibodies. RESULTS: The combination of a high vitamin K2 diet and PB treatment significantly reduced VC as measured by µCT for both the thoracic (P = 0.026) and abdominal aorta (P = 0.023), compared with MK7 or PB treatment alone. UcMGP stain was significantly more present in the low vitamin K2-treated groups in both the thoracic (P < 0.01) and abdominal aorta (P < 0.01) as compared with high vitamin K2-treated groups. Moreover, a high vitamin K diet and PBs led to reduced vascular oxidative stress. CONCLUSION: In an animal model of kidney failure with vitamin K deficiency, neither PB therapy nor vitamin K2 supplementation alone prevented VC. However, the combination of high vitamin K2 with PB treatment significantly attenuated VC.


Assuntos
Insuficiência Renal , Calcificação Vascular , Deficiência de Vitamina K , Animais , Feminino , Masculino , Ratos , Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular , Modelos Animais , Fosfatos , Diálise Renal , Insuficiência Renal/complicações , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle , Vitamina K , Vitamina K 1/uso terapêutico , Vitamina K 2/farmacologia , Vitamina K 2/uso terapêutico , Deficiência de Vitamina K/complicações , Deficiência de Vitamina K/tratamento farmacológico , Microtomografia por Raio-X
5.
Cells ; 10(8)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440866

RESUMO

BACKGROUND: Vascular calcification is an active process that increases cardiovascular disease (CVD) risk. There is still no consensus on an appropriate biomarker for vascular calcification. We reasoned that the biomarker for vascular calcification is the collection of all blood components that can be sensed and integrated into a calcification response by human vascular smooth muscle cells (hVSMCs). METHODS: We developed a new cell-based high-content assay, the BioHybrid assay, to measure in vitro calcification. The BioHybrid assay was compared with the o-Cresolphthalein assay and the T50 assay. Serum and plasma were derived from different cohort studies including chronic kidney disease (CKD) stages III, IV, V and VD (on dialysis), pseudoxanthoma elasticum (PXE) and other cardiovascular diseases including serum from participants with mild and extensive coronary artery calcification (CAC). hVSMCs were exposed to serum and plasma samples, and in vitro calcification was measured using AlexaFluor®-546 tagged fetuin-A as calcification sensor. RESULTS: The BioHybrid assay measured the kinetics of calcification in contrast to the endpoint o-Cresolphthalein assay. The BioHybrid assay was more sensitive to pick up differences in calcification propensity than the T50 assay as determined by measuring control as well as pre- and post-dialysis serum samples of CKD patients. The BioHybrid response increased with CKD severity. Further, the BioHybrid assay discriminated between calcification propensity of individuals with a high CAC index and individuals with a low CAC index. Patients with PXE had an increased calcification response in the BioHybrid assay as compared to both spouse and control plasma samples. Finally, vitamin K1 supplementation showed lower in vitro calcification, reflecting changes in delta Agatston scores. Lower progression within the BioHybrid and on Agatston scores was accompanied by lower dephosphorylated-uncarboxylated matrix Gla protein levels. CONCLUSION: The BioHybrid assay is a novel approach to determine the vascular calcification propensity of an individual and thus may add to personalised risk assessment for CVD.


Assuntos
Músculo Liso Vascular/metabolismo , Calcificação Vascular/sangue , Biomarcadores/sangue , Proteínas de Ligação ao Cálcio/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Células Cultivadas , Proteínas da Matriz Extracelular/sangue , Corantes Fluorescentes/química , Testes Hematológicos , Humanos , Cinética , Diálise Renal , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Calcificação Vascular/diagnóstico , Vitamina K 1/uso terapêutico , alfa-2-Glicoproteína-HS/química , alfa-2-Glicoproteína-HS/metabolismo , Proteína de Matriz Gla
6.
Transplantation ; 105(10): e114-e130, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982910

RESUMO

Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor-ß signaling, cellular rejection, inflammation, and others. In this review, we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multiomic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.


Assuntos
Dieta Saudável , Sobrevivência de Enxerto/efeitos dos fármacos , Nefropatias/diagnóstico , Nefropatias/terapia , Transplante de Rim/efeitos adversos , Túbulos Renais/efeitos dos fármacos , Terapêutica com RNAi , Fármacos Renais/uso terapêutico , Animais , Atrofia , Biomarcadores/metabolismo , Biópsia , Fibrose , Humanos , Imunossupressores/efeitos adversos , Nefropatias/etiologia , Nefropatias/metabolismo , Túbulos Renais/diagnóstico por imagem , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Valor Preditivo dos Testes , Terapêutica com RNAi/efeitos adversos , Fármacos Renais/efeitos adversos , Fatores de Risco , Transdução de Sinais , Resultado do Tratamento
7.
Nutrients ; 12(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575901

RESUMO

Vitamin K and its essential role in coagulation (vitamin K [Koagulation]) have been well established and accepted the world over. Many countries have a Recommended Daily Intake (RDI) for vitamin K based on early research, and its necessary role in the activation of vitamin K-dependent coagulation proteins is known. In the past few decades, the role of vitamin K-dependent proteins in processes beyond coagulation has been discovered. Various isoforms of vitamin K have been identified, and vitamin K2 specifically has been highlighted for its long half-life and extrahepatic activity, whereas the dietary form vitamin K1 has a shorter half-life. In this review, we highlight the specific activity of vitamin K2 based upon proposed frameworks necessary for a bioactive substance to be recommended for an RDI. Vitamin K2 meets all these criteria and should be considered for a specific dietary recommendation intake.


Assuntos
Dieta , Suplementos Nutricionais , Recomendações Nutricionais , Vitamina K 1/administração & dosagem , Vitamina K 2/administração & dosagem , Humanos , Vitamina K 1/metabolismo , Vitamina K 1/farmacocinética , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo , Vitamina K 2/farmacocinética , Vitamina K 2/uso terapêutico , Deficiência de Vitamina K/complicações , Deficiência de Vitamina K/metabolismo , Deficiência de Vitamina K/prevenção & controle
8.
Nephrol Dial Transplant ; 35(1): 65-73, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715488

RESUMO

BACKGROUND: Optimal phosphate control is an unmet need in chronic kidney disease (CKD). High serum phosphate increases calcification burden and is associated with mortality and cardiovascular disease in CKD. Nicotinamide (NA) alone or in combination with calcium-free phosphate binders might be a strategy to reduce phosphate levels and calcification and thus impact cardiovascular disease in CKD. METHODS: We studied the effect of NA alone and in combination with magnesium carbonate (MgCO3) as a potential novel treatment strategy. CKD was induced in dilute brown non-agouti/2 mice by subtotal nephrectomy followed by a high-phosphate diet (HP) and 7 weeks of treatment with NA, MgCO3 or their combination. Control mice underwent subtotal nephrectomy and received an HP or underwent sham surgery and received standard chow plus NA. RESULTS: CKD mice showed increased serum fibroblast growth factor 23 and calcium-phosphate product that was normalized by all treatment regimes. NA alone increased soft tissue and vascular calcification, whereas any treatment with MgCO3 significantly reduced calcification severity in CKD. While MgCO3 supplementation alone resulted in decreased calcification severity, it resulted in increased intestinal expression of the phosphate transporters type II sodium-dependent phosphate transporter 1 (Pit-1). Combined therapy of MgCO3 and NA reduced tissue calcification and normalized expression levels of intestinal phosphate transporter proteins. CONCLUSIONS: In conclusion, the data indicate that NA increases while MgCO3 reduces ectopic calcification severity. Augmented expression of intestinal phosphate transporters by MgCO3 treatment was abolished by the addition of NA. However, the clinical relevance of the latter remains to be explored. Importantly, the data suggest no benefit of NA regarding treatment of calcification in addition to MgCO3.


Assuntos
Magnésio/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Niacinamida/farmacologia , Insuficiência Renal Crônica/complicações , Uremia/complicações , Calcificação Vascular/prevenção & controle , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Músculo Liso Vascular/citologia , Calcificação Vascular/etiologia , Complexo Vitamínico B/farmacologia
9.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791399

RESUMO

Vitamin K is an essential bioactive compound required for optimal body function. Vitamin K can be present in various isoforms, distinguishable by two main structures, namely, phylloquinone (K1) and menaquinones (K2). The difference in structure between K1 and K2 is seen in different absorption rates, tissue distribution, and bioavailability. Although differing in structure, both act as cofactor for the enzyme gamma-glutamylcarboxylase, encompassing both hepatic and extrahepatic activity. Only carboxylated proteins are active and promote a health profile like hemostasis. Furthermore, vitamin K2 in the form of MK-7 has been shown to be a bioactive compound in regulating osteoporosis, atherosclerosis, cancer and inflammatory diseases without risk of negative side effects or overdosing. This review is the first to highlight differences between isoforms vitamin K1 and K2 by means of source, function, and extrahepatic activity.


Assuntos
Coagulação Sanguínea , Suscetibilidade a Doenças , Vitamina K/metabolismo , Animais , Disponibilidade Biológica , Suplementos Nutricionais , Humanos , Redes e Vias Metabólicas , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo
11.
Dtsch Med Wochenschr ; 141(21): 1537-1542, 2016 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-27750340

RESUMO

Disturbances in magnesium homeostasis are frequent clinical conditions, particularly the prevalence of hypomagnesaemia is high. However, it remains an open question which laboratory method is optimal to assess the magnesium level in the body. Most frequently physicians measure total magnesium in serum. Many associative data from observational studies point towards an association between low magnesium levels and increased cardiovascular risk as well as increased mortality. Vice versa, normal-to-high magnesium levels in patients with advanced renal failure translate to a better outcome. The present review summarizes our knowledge on protective effects of magnesium. Additionally, we address the limited evidence supporting targeted magnesium supplementation.


Assuntos
Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/metabolismo , Deficiência de Magnésio/diagnóstico , Deficiência de Magnésio/metabolismo , Magnésio/metabolismo , Modelos Cardiovasculares , Animais , Humanos
12.
Nephrol Dial Transplant ; 27(12): 4298-307, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23045427

RESUMO

Many therapeutic strategies for end-stage renal disease (ESRD) patients have failed to exhibit survival improvement in large-scale randomized controlled trials (RCTs). The current review gives an overview on the medical strategies for treatment of ESRD patients that have previously been tested in RCTs with mortality reduction as pre-specified study endpoint. We identified 19 RCTs with the following therapeutic strategies: haematocrit increase by erythropoietin (n = 1), growth hormone application (n = 1), lipid-lowering by statins (n = 3), renin-angiotensin system blockage (n = 4), ß-receptor blockage (n = 1), homocysteine lowering (n = 5), application of anti-oxidative substances (n = 2), omega-3-fatty-acid supplementation (n = 1) and calcium-free phosphate binders (n = 1). While several of these studies were able to demonstrate reductions in hard cardiovascular endpoints such as myocardial infarction, survival improvement in ESRD patients was demonstrated in only three studies. The substances tested in these three trials were telmisartan, candesartan and carvedilol. In summary, most pharmaceutical mono-interventions failed to reduce mortality in ESRD patients, i.e. a multi-morbid population. Apart from the issues relating to future trial design, this raises the question of whether we need multi-faceted interventions to improve this dismal situation. Until then, nephrologists are left with little evidence and lots of opinions.


Assuntos
Falência Renal Crônica/mortalidade , Falência Renal Crônica/terapia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Differentiation ; 79(3): 182-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20153102

RESUMO

During early embryogenesis, mesenchymal cells arise from the primitive epithelium and can revert to an epithelial phenotype by passing through mesenchymal-to-epithelial transition (MET). Mesenchymal stem cells (MSC) of the Wharton's Jelly of the umbilical cord (UC-MSC) express pluripotency markers underlining their primitive developmental state. As mesenchymal stem cells from bone marrow (BM-MSC) possess a strong propensity to ameliorate mesenchymal tissue damage, UC-MSC might also be able to differentiate into cells apart from the mesoderm, allowing replacement of ectodermal and mesodermal tissues. In this study, we analysed the possible epidermal differentiation of UC-MSC on dermal equivalents (DEs) consisting of collagen I/III with dermal fibroblasts and subjected to the culture conditions for tissue engineering of skin with keratinocytes. The culture conditions were further modified by pre-treating the cells with 5-azacytidine or by supplementing the medium with all trans retinoic acid. Interestingly, a subpopulation of UC-MSC (29%) co-expressed pan-cytokeratin (epithelial marker; pan-CK) and vimentin (mesenchymal marker) after isolation. Under the three-dimensional conditions of skin, the number of pan-CK(+)-cells increased to >30% after 21 days of cultivation, while under osteogenic culture conditions the cells were pan-CK-negative, thus showing the influence of the artificial niche. Nevertheless, the pan-CK-expression was neither accompanied by typical epithelial morphology nor expression of other epidermal markers. The pan-CK-detection can be explained by the expression of cytokeratins in myofibroblasts. UC-MSC expressed alpha-smooth muscle actin after isolation and displayed all features of functional myofibroblasts like morphology, cell-mediated contraction of a collagen gel and production of components of the extracellular matrix (ECM). The treatment with all trans retinoic acid or 5-azacytidine could neither induce an epidermal differentiation nor enhance the myofibroblastic differentiation. Concluding, UC-MSC might be an interesting cell source to support the regeneration of wounds by their differentiation into myofibroblasts and their extensive synthesis of ECM components.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/métodos , Cordão Umbilical/citologia , Azacitidina/metabolismo , Biomarcadores/metabolismo , Colágeno/metabolismo , Derme/citologia , Matriz Extracelular/metabolismo , Géis/metabolismo , Humanos , Coloração e Rotulagem , Cordão Umbilical/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA