Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(4): 1993-2004, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35137160

RESUMO

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.


Assuntos
Histonas , Lisina , Animais , Ilhas de CpG/genética , Metilação de DNA , Histona Metiltransferases/genética , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/genética , Oogênese/genética
2.
Exp Hematol ; 69: 37-42, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315824

RESUMO

Disrupting the protein-protein interaction for molecularly targeted cancer therapeutics can be a challenging but promising strategy. Compounds that disrupt the interaction between menin, a chromatin-binding protein, and oncogenic mixed lineage leukemia fusion proteins (MLL-FPs) have shown significant promise in preclinical models of leukemia and have a high degree of selectivity for leukemia versus normal hematopoietic cells. Biochemical and structural studies demonstrate that, in addition to disrupting the menin-MLL-FP interaction, such compounds also inhibit menin-MLL1, menin-MLL2, and other menin-interacting proteins. Here, we address the degree to which disruption of menin-MLL-FP interactions or menin-MLL1/MLL2 interactions contribute to the antileukemia effect of menin inhibition. We show that Men1 deletion in MLL-AF9-transformed leukemia cells produces distinct cellular and molecular consequences compared with Mll1;Mll2 co-deletion and that compounds disrupting menin-MLL N-terminal interactions largely phenocopy menin loss. Moreover, we show that Mll1;Mll2-deficient leukemia cells exhibit enhanced sensitivity to menin interaction inhibitors, which is consistent with each regulating complementary genetic pathways. These data illustrate the heightened dependency of MLL-FPs on menin compared with wild-type MLL1/MLL2 for regulation of downstream target genes and argue that the predominant action of menin inhibitory compounds is through direct inhibition of MLL-FPs without significant contribution from MLL1/MLL2 inhibition.


Assuntos
Transformação Celular Neoplásica/metabolismo , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Proto-Oncogênicas/genética
3.
Arterioscler Thromb Vasc Biol ; 27(1): 120-6, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17053168

RESUMO

OBJECTIVE: The role of antioxidants in preventing vascular disease remains controversial. Vascular endothelial growth factor (VEGF-A) is important for endothelial and monocyte function. This study investigated the negative effects of smoking on monocyte migratory responsiveness to VEGF-A and the usefulness of vitamin C to prevent smoking-induced monocyte dysfunction. METHODS AND RESULTS: The chemotactic response of isolated monocytes from a cohort of 17 non-smokers and 10 smokers toward VEGF-A was assessed. VEGF-A significantly stimulated the migration of monocytes in non-smokers; the monocytes from smokers failed to respond to VEGF-A. Repeated analysis after 2 weeks of vitamin C intake (2 g/d) showed a fully restored VEGF-A-induced monocyte migration in smokers. VEGF-A serum levels were not altered by vitamin C. VEGF-A-inducible kinase activity was intact in monocytes from smokers as assessed by in vitro kinase assay. Monocyte dysfunction can be mimicked in vitro by challenging monocytes with a range of reactive oxygen species (ROS). CONCLUSIONS: Stimulation of monocyte migration by VEGF-A was severely attenuated in smokers, and the deficit observed was surmounted by vitamin C supplementation. The negative effects of smoking on monocyte function may translate into adverse impacts on VEGF-A-dependent repair processes such as arteriogenesis. These results propose a causative role of oxidative stress in smoking-induced monocyte dysfunction.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Suplementos Nutricionais , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Fumar/efeitos adversos , Adulto , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Humanos , Masculino , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/farmacologia , Fatores de Risco , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA