Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Psychol ; 11(1): 194, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393359

RESUMO

BACKGROUND: Stress-related disorders are a growing public health concern. While stress is a natural and adaptive process, chronic exposure to stressors can lead to dysregulation and take a cumulative toll on physical and mental well-being. One approach to coping with stress and building resilience is through Mindfulness-Based Stress Reduction (MBSR). By understanding the neural mechanisms of MBSR, we can gain insight into how it reduces stress and what drives individual differences in treatment outcomes. This study aims to establish the clinical effects of MBSR on stress regulation in a population that is susceptible to develop stress-related disorders (i.e., university students with mild to high self-reported stress), to assess the role of large-scale brain networks in stress regulation changes induced by MBSR, and to identify who may benefit most from MBSR. METHODS: This study is a longitudinal two-arm randomised, wait-list controlled trial to investigate the effects of MBSR on a preselected, Dutch university student population with elevated stress levels. Clinical symptoms are measured at baseline, post-treatment, and three months after training. Our primary clinical symptom is perceived stress, with additional measures of depressive and anxiety symptoms, alcohol use, stress resilience, positive mental health, and stress reactivity in daily life. We investigate the effects of MBSR on stress regulation in terms of behaviour, self-report measures, physiology, and brain activity. Repetitive negative thinking, cognitive reactivity, emotional allowance, mindfulness skills, and self-compassion will be tested as potential mediating factors for the clinical effects of MBSR. Childhood trauma, personality traits and baseline brain activity patterns will be tested as potential moderators of the clinical outcomes. DISCUSSION: This study aims to provide valuable insights into the effectiveness of MBSR in reducing stress-related symptoms in a susceptible student population and crucially, to investigate its effects on stress regulation, and to identify who may benefit most from the intervention. TRIAL REGISTRATION: Registered on September 15, 2022, at clinicaltrials.gov, NCT05541263 .


Assuntos
Atenção Plena , Humanos , Universidades , Adaptação Psicológica , Consumo de Bebidas Alcoólicas , Encéfalo , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Neuroimage ; 243: 118527, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34469815

RESUMO

It has recently been shown that acute stress affects the allocation of neural resources between large-scale brain networks, and the balance between the executive control network and the salience network in particular. Maladaptation of this dynamic resource reallocation process is thought to play a major role in stress-related psychopathology, suggesting that stress resilience may be determined by the retained ability to adaptively reallocate neural resources between these two networks. Actively training this ability could hence be a potentially promising way to increase resilience in individuals at risk for developing stress-related symptomatology. Using real-time functional Magnetic Resonance Imaging, the current study investigated whether individuals can learn to self-regulate stress-related large-scale network balance. Participants were engaged in a bidirectional and implicit real-time fMRI neurofeedback paradigm in which they were intermittently provided with a visual representation of the difference signal between the average activation of the salience and executive control networks, and tasked with attempting to self-regulate this signal. Our results show that, given feedback about their performance over three training sessions, participants were able to (1) learn strategies to differentially control the balance between SN and ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the prospect of a mild electric stimulation. The current study hence constitutes an important first successful demonstration of neurofeedback training based on stress-related large-scale network balance - a novel approach that has the potential to train control over the central response to stressors in real-life and could build the foundation for future clinical interventions that aim at increasing resilience.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Estresse Psicológico/diagnóstico por imagem , Adulto , Função Executiva , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Autocontrole , Adulto Jovem
3.
Sci Rep ; 10(1): 17890, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087734

RESUMO

Scanning transmission electron microscopy (STEM) allows to gain quantitative information on the atomic-scale structure and composition of materials, satisfying one of todays major needs in the development of novel nanoscale devices. The aim of this study is to quantify the impact of inelastic, i.e. plasmon excitations (PE), on the angular dependence of STEM intensities and answer the question whether these excitations are responsible for a drastic mismatch between experiments and contemporary image simulations observed at scattering angles below [Formula: see text] 40 mrad. For the two materials silicon and platinum, the angular dependencies of elastic and inelastic scattering are investigated. We utilize energy filtering in two complementary microscopes, which are representative for the systems used for quantitative STEM, to form position-averaged diffraction patterns as well as atomically resolved 4D STEM data sets for different energy ranges. The resulting five-dimensional data are used to elucidate the distinct features in real and momentum space for different energy losses. We find different angular distributions for the elastic and inelastic scattering, resulting in an increased low-angle intensity ([Formula: see text] 10-40 mrad). The ratio of inelastic/elastic scattering increases with rising sample thickness, while the general shape of the angular dependency is maintained. Moreover, the ratio increases with the distance to an atomic column in the low-angle regime. Since PE are usually neglected in image simulations, consequently the experimental intensity is underestimated at these angles, which especially affects bright field or low-angle annular dark field imaging. The high-angle regime, however, is unaffected. In addition, we find negligible impact of inelastic scattering on first-moment imaging in momentum-resolved STEM, which is important for STEM techniques to measure internal electric fields in functional nanostructures. To resolve the discrepancies between experiment and simulation, we present an adopted simulation scheme including PE. This study highlights the necessity to take into account PE to achieve quantitative agreement between simulation and experiment. Besides solving the fundamental question of missing physics in established simulations, this finally allows for the quantitative evaluation of low-angle scattering, which contains valuable information about the material investigated.

4.
Addict Behav ; 110: 106488, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32599496

RESUMO

INTRODUCTION: Alcohol addiction compromises cardiovascular health, possibly due to impaired control of the heart and vasculature by the autonomic nervous system. We aimed to assess the effects of National Acupuncture Detoxification Association (NADA) acupuncture on cardiovascular autonomic functions, psychiatric comorbidities and abstinence in patients addicted to alcohol. MATERIAL AND METHODS: A randomized sham controlled three-arm study was undertaken in 72 patients (nine females, aged 43.7 ± 9.2 years, mean ± SD) undergoing in-patient rehabilitation for alcohol addiction. Patients were randomly allocated (1:1:1) to receive twenty 30-minute NADA or sham acupuncture sessions within six weeks or no intervention. They were evaluated for craving, depression, anxiety and autonomic control of the heart (heart rate variability, HRV), vasculature (laser Doppler flowmetry) and sweat glands (sympathetic skin response). Testing was performed at baseline, immediately post intervention (sham intervention or control period, respectively) and another four weeks later. Abstinence was assessed one year after study completion. RESULTS: Patients in the NADA arm displayed increased HRV immediately post-intervention compared to baseline (SDNN: 72.8 ms ± 34.2 ms vs. 57.9 ms ± 31.2 ms, p = 0.001). This increase was sustained four weeks later (66.2 ms ± 32.4 ms, p = 0.015). HRV remained unaltered following sham or no acupuncture (p = n.s.). Autonomic function of vasculature and sweat glands, psychiatric comorbidities and one-year abstinence did not differ between study arms. CONCLUSIONS: NADA acupuncture may improve autonomic cardiac function. However, this improvement appears not to translate into alleviation of psychiatric comorbidities or sustained abstinence.


Assuntos
Terapia por Acupuntura , Alcoolismo , Adulto , Alcoolismo/terapia , Sistema Nervoso Autônomo , Feminino , Coração , Frequência Cardíaca , Humanos , Pessoa de Meia-Idade
5.
Hum Brain Mapp ; 40(14): 4026-4037, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179609

RESUMO

Head motion is a common problem in clinical as well as empirical (functional) magnetic resonance imaging applications, as it can lead to severe artefacts that reduce image quality. The scanned individuals themselves, however, are often not aware of their head motion. The current study explored whether providing subjects with this information using tactile feedback would reduce their head motion and consequently improve image quality. In a single session that included six runs, 24 participants performed three different cognitive tasks: (a) passive viewing, (b) mental imagery, and (c) speeded responses. These tasks occurred in two different conditions: (a) with a strip of medical tape applied from one side of the magnetic resonance head coil, via the participant's forehead, to the other side, and (b) without the medical tape being applied. Results revealed that application of medical tape to the forehead of subjects to provide tactile feedback significantly reduced both translational as well as rotational head motion. While this effect did not differ between the three cognitive tasks, there was a negative quadratic relationship between head motion with and without feedback. That is, the more head motion a subject produced without feedback, the stronger the motion reduction given the feedback. In conclusion, the here tested method provides a simple and cost-efficient way to reduce subjects' head motion, and might be especially beneficial when extensive head motion is expected a priori.


Assuntos
Artefatos , Retroalimentação Sensorial , Movimentos da Cabeça , Imageamento por Ressonância Magnética/métodos , Adolescente , Feminino , Humanos , Masculino , Movimento (Física) , Tato , Adulto Jovem
6.
Neuroimage ; 194: 228-243, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30910728

RESUMO

Real-time functional magnetic resonance imaging (rt-fMRI) enables the update of various brain-activity measures during an ongoing experiment as soon as a new brain volume is acquired. However, the recorded Blood-oxygen-level dependent (BOLD) signal also contains physiological artifacts such as breathing and heartbeat, which potentially cause misleading false positive effects especially problematic in brain-computer interface (BCI) and neurofeedback (NF) setups. The low temporal resolution of echo planar imaging (EPI) sequences (which is in the range of seconds) prevents a proper separation of these artifacts from the BOLD signal. MR-Encephalography (MREG) has been shown to provide the high temporal resolution required to unalias and correct for physiological fluctuations and leads to increased specificity and sensitivity for mapping task-based activation and functional connectivity as well as for detecting dynamic changes in connectivity over time. By comparing a simultaneous multislice echo planar imaging (SMS-EPI) sequence and an MREG sequence using the same nominal spatial resolution in an offline analysis for three different experimental fMRI paradigms (perception of house and face stimuli, motor imagery, Stroop task), the potential of this novel technique for future BCI and NF applications was investigated. First, adapted general linear model pre-whitening which accounts for the high temporal resolution in MREG was implemented to calculate proper statistical results and be able to compare these with the SMS-EPI sequence. Furthermore, the respiration- and cardiac pulsation-related signals were successfully separated from the MREG signal using independent component analysis which were then included as regressors for a GLM analysis. Only the MREG sequence allowed to clearly separate cardiac pulsation and respiration components from the signal time course. It could be shown that these components highly correlate with the recorded respiration and cardiac pulsation signals using a respiratory belt and fingertip pulse plethysmograph. Temporal signal-to-noise ratios of SMS-EPI and MREG were comparable. Functional connectivity analysis using partial correlation showed a reduced standard error in MREG compared to SMS-EPI. Also, direct time course comparisons by down-sampling the MREG signal to the SMS-EPI temporal resolution showed lower variance in MREG. In general, we show that the higher temporal resolution is beneficial for fMRI time course modeling and this aspect can be exploited in offline application but also, is especially attractive, for real-time BCI and NF applications.


Assuntos
Mapeamento Encefálico/métodos , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Neurorretroalimentação/métodos , Adulto , Artefatos , Encéfalo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
7.
Neuroimage ; 184: 36-44, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205210

RESUMO

There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.


Assuntos
Imaginação , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Neurorretroalimentação , Adulto , Mapeamento Encefálico , Feminino , Humanos , Cinestesia , Masculino , Autocontrole , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA