RESUMO
BACKGROUND: To understand the health-related quality of life (HRQoL) in inclusion body myositis (IBM) from a holistic perspective on the background of a complex care situation. The focus was on how the patient journey may be structured over the course of this rare disease. METHODS: An exploratory qualitative study was performed via in-depth semi-structured interviews. Seven patients (males n = 5) with 2011 European Neuromuscular Centre (ENMC) IBM criteria from the German IBM patient registry were interviewed for this study. The dynamic network approach of resilience and the throughput-model of health services research were used to structure the qualitative analysis. RESULTS: Our results suggest that IBM patients experience the holistic HRQoL and care situation typically in four phases: (1) uncertainty about physical vulnerability until diagnosis, (2) promising treatment approaches, (3) self-management and dyadic coping, (4) weak body, busy mind and caregiver burden. The homophonous in-vivo code "patience journey" describes the frequently reported emotional perspective of the patient journey. Although the overarching theme of perceived social support varied throughout these phases, a reliable patient-partner-dyad may lead to improved HRQoL in the long-term. CONCLUSIONS: New hypotheses for future quantitative research were generated to better understand the IBM patients' burden in the long term. The identified relevance of social support emphasizes the patients' need to handle IBM as manageable in medical settings. During exhausting phases of IBM progression, more effective care elements for patients and their partners could disclose varying needs. Strengthening multi-professional healthcare services via individualised informational, practical, or emotional support could improve HRQoL, especially since there is no curative treatment available so far.
Assuntos
Miosite de Corpos de Inclusão , Qualidade de Vida , Masculino , Humanos , Feminino , Qualidade de Vida/psicologia , Miosite de Corpos de Inclusão/terapia , Miosite de Corpos de Inclusão/diagnóstico , Pesquisa Qualitativa , Apoio Social , Adaptação PsicológicaRESUMO
BACKGROUND: The technetium 99 m (99mTc)-radiolabeled, leukocyte-avid peptide-glycoseaminoglycan complex, [99mTc]P1827DS, has been synthesized as an improved infection/inflammation imaging agent to [99mTc]P483H (LeukoTect, Diatide). In a phase I/II clinical trail, [99mTc]P483H images were equivalent to those obtained with 111In ex vivo labeled leukocytes. However, there was physiologic accumulation of radioactivity in the body that could hamper interpretation of the images. In this study, the potential of [99mTc]P1827DS for infection imaging was assessed in comparison with [99mTc]P483H and the well-described imaging agent [99mTc] hydrazinonicotinamide (HYNIC)-interleukin 8 (IL-8). METHODS: The binding of [99mTc]P1827DS to human blood cell was studied in vitro. A rabbit Escherichia coli infection model was used to perform the biodistribution and imaging studies with [99mTc]P1827DS, [99mTc]P483H and [99mTc]HYNIC-IL-8. RESULTS: [99mTc]P1827DS binds to leukocytes but not to erythrocytes. The leukocyte binding was not saturable up to an investigated concentration of 10 microM. The accumulation of [99mTc]P1827/DS at the infection site strongly depends on the P1827/DS ratio and was optimal at a molar ratio of 10:1. [99mTc]P1827DS shows improved biodistribution over [99mTc]P483H with similar uptake at the infection site. Abscess uptake of [99mTc]HYNIC-IL-8 was approximately three times higher than that of [99mTc]P1827DS. [99mTc]HYNIC-IL-8 showed high accumulation in the kidneys, whereas [99mTc]P1827DS showed high lung uptake and slightly higher accumulation in the liver and spleen. CONCLUSION: [99mTc]P1827DS is a potential new inflammation imaging agent, which clearly visualized the abscess in the rabbit E. coli infection model and showed improved biodistribution compared to [99mTc]P483H. However, the infection uptake and biodistribution of [99mTc]P1827DS is not superior to that of [99mTc]HYNIC-IL-8 in this animal model.