Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
CNS Neurol Disord Drug Targets ; 12(7): 914-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24040806

RESUMO

In recent years, the hypothalamus, amygdala and hippocampus have attracted increased interest with regard to the effects of stress on neurobiological systems in individuals with depression and suicidal behaviour. A large body of evidence indicates that these subcortical regions are involved in the pathogenetic mechanisms of mood disorders and suicide. The current neuroimaging techniques inadequately resolve the structural components of small and complex brain structures. In previous studies, our group was able to demonstrate a structural and neuronal pathology in mood disorders. However, the impact of suicide remains unclear. In the current study we used volumetric measurements of serial postmortem sections with combined Nissl-myelin staining to investigate the hypothalamus, amygdala and hippocampus in suicide victims with mood disorders (n = 11), non-suicidal mood disorder patients (n = 9) and control subjects (n = 23). Comparisons between the groups by using an ANCOVA showed a significant overall difference for the hypothalamus (p = 0.001) with reduced volumes in non-suicidal patients compared to suicide victims (p = 0.018) and controls (p = 0.006). To our surprise, the volumes between the suicide victims and controls did not differ significantly. For the amygdala and hippocampus no volume changes between the groups could be detected (all p values were n. s.). In conclusion our data suggest a structural hypothalamic pathology in non-suicidal mood disorder patients. The detected differences between suicidal and non-suicidal patients suggest that suicidal performances might be related to the degree of structural deficits.


Assuntos
Tonsila do Cerebelo/patologia , Hipocampo/patologia , Hipotálamo/patologia , Transtornos do Humor/patologia , Suicídio , Adulto , Idoso , Atrofia/complicações , Atrofia/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/complicações , Suicídio/psicologia
2.
Eur J Pharmacol ; 680(1-3): 55-62, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22489319

RESUMO

Oxyresveratrol is a potent antioxidant and free-radical scavenger found in mulberry wood (Morus alba L.) with demonstrated protective effects against cerebral ischemia. We analyzed the neuroprotective ability of oxyresveratrol using an in vitro model of stretch-induced trauma in co-cultures of neurons and glia, or by exposing cultures to high levels of glutamate. Cultures were treated with 25 µM, 50 µM or 100 µM oxyresveratrol at the time of injury. Trauma produced marked neuronal death when measured 24 h post-injury, and oxyresveratrol significantly inhibited this death. Microscopic examination of glia suggested signs of toxicity in cultures treated with 100 µM oxyresveratrol, as demonstrated by elevated S-100B protein release and a high proportion of cells with condensed nuclei. Cultures exposed to glutamate (100 µM) for 24 h exhibited ~ 37% neuronal loss, which was not inhibited by oxyresveratrol. These results show that the two pathologies of high glutamate exposure and trauma are differentially affected by oxyresveratrol treatment in vitro. Further studies using oxyresveratrol in trauma models are warranted, as toxicity to glia could be beneficial by inhibiting reactive gliosis, which often occurs after trauma.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , Animais , Antioxidantes/farmacologia , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Sequestradores de Radicais Livres/farmacologia , Ácido Glutâmico/farmacologia , Camundongos , Fatores de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA