Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 398: 130517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437961

RESUMO

The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether ß-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.


Assuntos
Benzaldeídos , Cobalto , Níquel , Óxidos , Óleos de Plantas , Polifenóis , Zircônio , Lignina , Fenóis
2.
Bioresour Technol ; 376: 128859, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906241

RESUMO

A huge amount of waste is generated by the cashew processing industries. This study aims to valorise these cashew wastes generated at different levels while processing cashew nuts in factories. The feedstocks include cashew skin, cashew shell and cashew shell de-oiled cake. Slow pyrolysis of these three different cashew wastes was performed at varying temperatures (300-500℃) at a heating rate of 10℃/min in a lab scale glass-tubular reactor under inert atmosphere of nitrogen with flow rate of 50 ml/min. The total bio-oil yield for cashew skin and the de-oiled shell cake was 37.1 and 48.6 wt% at 400℃ and 450℃, respectively. However, the maximum bio-oil yield obtained for cashew shell waste was 54.9 wt% at 500℃. The bio-oil was analysed using GC-MS, FTIR, and NMR. Along with the various functionalities observed in bio-oil through GC-MS, phenolics were observed to have maximum area% for all the feedstocks at all temperatures. At all the slow pyrolysis temperatures, cashew skin led to more biochar yield (40 wt%) as compared to cashew de-oiled cake (26 wt%) and cashew shell waste (22 wt%). Biochar was characterized by various analytical tools such as XRD, FTIR, Proximate analyser, CHNS, Py-GC/MS and SEM. Characterization of biochar revealed its carbonaceous and amorphous nature along with porosity.


Assuntos
Anacardium , Pirólise , Óleos de Plantas , Biocombustíveis/análise , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA