Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(5): 1457-1466, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35147716

RESUMO

KEY MESSAGE: Cytoplasmic male sterility in sugar beet becomes thermo-sensitive when combined with specific genotypes, potentially offering a means to environmentally control pollination by this trait. The stability of cytoplasmic male sterility expression in several genetic backgrounds was investigated in sugar beet (Beta vulgaris L.). Nine genetically heterogenous plants from open-pollinated varieties were crossed with a cytoplasmic male sterile line to obtain 266 F1 plants. Based on marker analysis using a multiallelic DNA marker linked to restorer-of-fertility 1 (Rf1), we divided the F1 plants into 15 genotypes. We evaluated the phenotypes of the F1 plants under two environmental conditions: greenhouse rooms with or without daytime heating during the flowering season. Three phenotypic groups appeared: those consistently expressing male sterility, those consistently having restored pollen fertility, and those expressing male sterility in a thermo-sensitive manner. All plants in the consistently male sterile group inherited a specific Rf1 marker type named p4. We tested the potential for thermo-sensitive male sterile plants to serve as seed parents for hybrid seed production, and three genotypes were selected. Open pollination by a pollen parental line with a dominant trait of red-pigmented hypocotyls and leaf veins resulted in seed setting on thermo-sensitive male sterile plants, indicating that their female organs were functional. More than 99.9% of the progeny expressed the red pigmentation trait; hence, highly pure hybrids were obtained. We determined the nucleotide sequences of Rf1 from the three genotypes: One had a novel allele and two had known alleles, of which one was reported to have been selected previously as a non-restoring allele at a single U.S. breeding station but not at other stations in the U.S., or in Europe or Japan, suggesting environmental sensitivity.


Assuntos
Beta vulgaris , Infertilidade das Plantas , Beta vulgaris/genética , Genes de Plantas , Genótipo , Melhoramento Vegetal , Infertilidade das Plantas/genética , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA