Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 146(6): 2259-2267, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625030

RESUMO

The CNS houses naturally occurring pathways that project from the brain to modulate spinal neuronal activity. The noradrenergic locus coeruleus (the A6 nucleus) originates such a descending control whose influence on pain modulation encompasses an interaction with a spinally projecting non-cerulean noradrenergic cell group. Hypothesizing the origin of an endogenous pain inhibitory pathway, our aim was to identify this cell group. A5 and A7 noradrenergic nuclei also spinally project. We probed their activity using an array of optogenetic manipulation techniques during in vivo electrophysiological experimentation. Interestingly, noxious stimulus evoked spinal neuronal firing was decreased upon opto-activation of A5 neurons (two-way ANOVA with Tukey post hoc, P < 0.0001). Hypothesizing that this may reflect activity in the noradrenergic diffuse noxious inhibitory control circuit, itself activated upon application of a conditioning stimulus, we opto-inhibited A5 neurons with concurrent conditioning stimulus application. Surprisingly, no spinal neuronal inhibition was observed; activity in the diffuse noxious inhibitory control circuit was abolished (two-way ANOVA, P < 0.0001). We propose that the A5 nucleus is a critical relay nucleus for mediation of diffuse noxious inhibitory controls. Given the plasticity of diffuse noxious inhibitory controls in disease, and its back and forward clinical translation, our data reveal a potential therapeutic target.


Assuntos
Controle Inibitório Nociceptivo Difuso , Humanos , Controle Inibitório Nociceptivo Difuso/fisiologia , Dor/metabolismo , Neurônios/metabolismo , Locus Cerúleo/metabolismo , Encéfalo/metabolismo , Norepinefrina/metabolismo , Medula Espinal/metabolismo
3.
Eur J Pain ; 24(7): 1330-1338, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32350984

RESUMO

BACKGROUND: Diffuse noxious inhibitory controls (DNIC) as measured in rat and conditioned pain modulation (CPM), the supposed psychophysical paradigm of DNIC measured in humans, are unique manifestations of an endogenous descending modulatory pathway that is activated by the application of a noxious conditioning stimulus. The predictive value of the human CPM processing is crucial when deliberating the translational worth of the two phenomena. METHODS: For CPM or DNIC measurement, test and conditioning stimuli were delivered using a computer-controlled cuff algometry system or manual inflation of neonate blood pressure cuffs, respectively. In humans (n = 20), cuff pain intensity (for pain detection and pain tolerance thresholds) was measured using an electronic visual analogue scale. In isoflurane-anaesthetized naïve rats, nociception was measured by recording deep dorsal horn wide dynamic range (WDR) neuronal firing rates (n = 7) using in vivo electrophysiology. RESULTS: A painful cuff-pressure conditioning stimulus on the leg increased pain detection and pain tolerance thresholds recorded by cuff stimulation on the contralateral leg in humans by 32% ± 3% and 24% ± 2% (mean ± SEM) of baseline responses, respectively (p < .001). This finding was back-translated by revealing that a comparable cuff-pressure conditioning stimulus (40 kPa) on the hind paw inhibited the responses of WDR neurons to noxious contralateral cuff test stimulation to 42% ± 9% of the baseline neuronal response (p = .003). CONCLUSIONS: These data substantiate that the noxious cuff pressure paradigm activates the descending pain modulatory system in rodent (DNIC) and man (CPM), respectively. Future back and forward translational studies using cuff pressure algometry may reveal novel mechanisms in varied chronic pain states. SIGNIFICANCE: This study provides novel evidence that a comparable noxious cuff pressure paradigm activates a unique form of endogenous inhibitory control in healthy rat and man. This has important implications for the forward translation of bench and experimental pain research findings to the clinical domain. If translatable mechanisms underlying dysfunctional endogenous inhibitory descending pathway expression (previously evidenced in painful states in rat and man) were revealed using cuff pressure algometry, the identification of new analgesic targets could be expedited.


Assuntos
Controle Inibitório Nociceptivo Difuso , Limiar da Dor , Animais , Nociceptividade , Medição da Dor , Pressão , Ratos
4.
Pharmacol Rep ; 71(2): 338-346, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30831439

RESUMO

BACKGROUND: In depression, excessive glucocorticoid action may cause maladaptive brain changes, including in the pathways controlling energy metabolism. Insulin and glucagon-like peptide-1 (GLP-1), besides regulation of glucose homeostasis, also possess neurotrophic properties. Current study was aimed at investigating the influence of prenatal stress (PS) on insulin, GLP-1 and their receptor (IR and GLP-1R) levels in the hypothalamus. GLP-1 and GLP-1R were assayed also in the hippocampus and frontal cortex - brain regions mainly affected in depression. The second objective was to determine the influence of exendin-4 and insulin on CRH promoter gene activity in in vitro conditions. METHODS: Adult male PS rats were subjected to acute stress and/or received orally glucose. Levels of hormones and their receptors were assayed with ELISA method. In vitro studies were performed on mHypoA-2/12 hypothalamic cell line, stably transfected with CRH promoter coupled with luciferase. RESULTS: PS has reduced GLP-1 and GLP-1R levels, attenuated glucose-induced increase in insulin concentration and increased the amount of phosphorylated IR in the hypothalamus of animals subjected to additional stress stimuli, and also decreased the GLP-1R level in the hippocampus. In vitro studies demonstrated that insulin is capable of increasing CRH promoter activity in the condition of stimulation of the cAMP/PKA pathway in the applied cellular model. CONCLUSION: Prenatal stress may act as a preconditioning factor, affecting the concentrations of hormones such as insulin and GLP-1 in the hypothalamus in response to adverse stimuli. The decreased GLP-1R level in the hippocampus could be linked with the disturbances in neuronal plasticity.


Assuntos
Depressão/fisiopatologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Animais , Linhagem Celular , Hormônio Liberador da Corticotropina/genética , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Exenatida/metabolismo , Feminino , Glucose/metabolismo , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Regiões Promotoras Genéticas/genética , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/fisiopatologia
5.
Eur J Pain ; 23(1): 183-197, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091265

RESUMO

BACKGROUND: The term 'irritable nociceptor' was coined to describe neuropathic patients characterized by evoked hypersensitivity and preservation of primary afferent fibres. Oxcarbazepine is largely ineffectual in an overall patient population, but has clear efficacy in a subgroup with the irritable nociceptor profile. We examine whether neuropathy in rats induced by spinal nerve injury shares overlapping pharmacological sensitivity with the irritable nociceptor phenotype using drugs that target sodium channels. METHODS: In vivo electrophysiology was performed in anaesthetized spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range (WDR) neurones in the ventral posterolateral thalamus (VPL) and dorsal horn. RESULTS: In neuropathic rats, spontaneous activity in the VPL was substantially attenuated by spinal lidocaine, an effect that was absent in sham rats. The former measure was in part dependent on ongoing peripheral activity as intraplantar lidocaine also reduced aberrant spontaneous thalamic firing. Systemic oxcarbazepine had no effect on wind-up of dorsal horn neurones in sham and SNL rats. However, in SNL rats, oxcarbazepine markedly inhibited punctate mechanical-, dynamic brush- and cold-evoked neuronal responses in the VPL and dorsal horn, with minimal effects on heat-evoked responses. In addition, oxcarbazepine inhibited spontaneous activity in the VPL. Intraplantar injection of the active metabolite licarbazepine replicated the effects of systemic oxcarbazepine, supporting a peripheral locus of action. CONCLUSIONS: We provide evidence that ongoing activity in primary afferent fibres drives spontaneous thalamic firing after spinal nerve injury and that oxcarbazepine through a peripheral mechanism exhibits modality-selective inhibitory effects on sensory neuronal processing. SIGNIFICANCE: The inhibitory effects of lidocaine and oxcarbazepine in this rat model of neuropathy resemble the clinical observations in the irritable nociceptor patient subgroup and support a mechanism-based rationale for bench-to-bedside translation when screening novel drugs.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Nociceptores/fisiologia , Oxcarbazepina/farmacologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células do Corno Posterior/efeitos dos fármacos , Nervos Espinhais/lesões , Núcleos Ventrais do Tálamo/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Ligadura , Masculino , Neuralgia/fisiopatologia , Neurônios/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Fenótipo , Ratos , Ratos Sprague-Dawley , Tálamo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA