Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Harmful Algae ; 118: 102296, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195423

RESUMO

Pseudo-nitzschia species are one of the leading causes of harmful algal blooms (HABs) along the western coast of the United States. Approximately half of known Pseudo-nitzschia strains can produce domoic acid (DA), a neurotoxin that can negatively impact wildlife and fisheries and put human life at risk through amnesic shellfish poisoning. Production and accumulation of DA, a secondary metabolite synthesized during periods of low primary metabolism, is triggered by environmental stressors such as nutrient limitation. To quantify and estimate the feedbacks between DA production and environmental conditions, we designed a simple mechanistic model of Pseudo-nitzschia and domoic acid dynamics, which we validate against batch and chemostat experiments. Our results suggest that, as nutrients other than nitrogen (i.e., silicon, phosphorus, and potentially iron) become limiting, DA production increases. Under Si limitation, we found an approximate doubling in DA production relative to N limitation. Additionally, our model indicates a positive relationship between light and DA production. These results support the idea that the relationship with nutrient limitation and light is based on direct impacts on Pseudo-nitzschia biosynthesis and biomass accumulation. Because it can easily be embedded within existing coupled physical-ecosystem models, our model represents a step forward toward modeling the occurrence of Pseudo-nitzschia HABs and DA across the U.S. West Coast.


Assuntos
Diatomáceas , Neurotoxinas , Calibragem , Diatomáceas/metabolismo , Ecossistema , Humanos , Ferro/metabolismo , Ácido Caínico/análogos & derivados , Neurotoxinas/metabolismo , Nitrogênio/metabolismo , Oceanos e Mares , Fósforo/metabolismo , Silício/metabolismo
2.
Toxins (Basel) ; 5(6): 1051-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23888515

RESUMO

A two and a half year old spayed female Miniature Australian Shepherd presented to a Montana veterinary clinic with acute onset of anorexia, vomiting and depression. Two days prior, the dog was exposed to an algal bloom in a community lake.Within h, the animal became lethargic and anorexic, and progressed to severe depression and vomiting. A complete blood count and serum chemistry panel suggested acute hepatitis, and a severe coagulopathy was noted clinically. Feces from the affected dog were positive for the cyanobacterial biotoxin, microcystin-LA (217 ppb). The dog was hospitalized for eight days. Supportive therapy consisted of fluids, mucosal protectants,vitamins, antibiotics, and nutritional supplements. On day five of hospitalization, a bile acid sequestrant, cholestyramine, was administered orally. Rapid clinical improvement was noted within 48 h of initiating oral cholestyramine therapy. At 17 days post-exposure the dog was clinically normal, and remained clinically normal at re-check, one year post-exposure. To our knowledge, this is the first report of successful treatment of canine cyanobacterial (microcystin) toxicosis. Untreated microcystin intoxication is commonly fatal, and can result in significant liver damage in surviving animals. The clinical success of this case suggests that oral administration of cholestyramine, in combination with supportive therapy, could significantly reduce hospitalization time, cost-of-care and mortality for microcystin-poisoned animals.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Resina de Colestiramina/uso terapêutico , Doenças do Cão/tratamento farmacológico , Microcistinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Doenças do Cão/induzido quimicamente , Cães , Feminino , Proliferação Nociva de Algas , Lagos , Microcystis , Montana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA