Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 92: 18-27, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430121

RESUMO

Arsenic (As)-toxicity is recognized as one of the major environmental problems, affecting productivity of crops worldwide, thereby threatening sustainable agriculture and food security. Progression in nanotechnology and its impacts have brought up concerns about the application of engineered nanoparticles (NPs) in various sectors of the economy, including the field of agronomy. Among various NPs, there has been a rising amount of interest regarding the effects of titanium NPs (TiNPs) on plants growth and development, and their fate of abiotic stress tolerance. Hence, the present study was aimed to assess the ameliorative potentialities of chemically and biologically/green synthesized TiNPs to alleviate As-induced toxic responses in Vigna radiata L. The results revealed that exposure to As hindered the growth indices (radicle length and biomass) and membrane integrity, while were improved with the application of chemical and green synthesized TiNPs. In addition, treatment of As provoked the accretion of reactive oxygen species (superoxide and hydrogen peroxide) and malondialdehyde (a lipid peroxidized product), but were diminished by the supplementation of chemical and green manufactured TiNPs. The experimental data also signified that exogenous application of chemical and green synthesized TiNPs conferred tolerance to As-induced oxidative injuries via perking-up the expressions of antioxidant genes and enzyme systems viz; superoxide dismutase and catalase. Therefore, the present study inferred that chemically and green synthesized TiNPs, particularly green manufactured, effectively mitigated the adverse impacts of As by augmenting antioxidant machinery, thereby proving its potentiality in the alleviation of As-toxicity, at least in Vignaradiata L.


Assuntos
Arsênio , Nanopartículas , Vigna , Antioxidantes , Catalase , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA