Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Chem ; 104: 107826, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36848855

RESUMO

Malaria is a major global health issue due to the emergence of resistance to most of the available antimalarial drugs. There is an urgent need to discover new antimalarials to tackle the resistance issue. The present study aims to explore the antimalarial potential of chemical constituents reported from Cissampelos pareira L., a medicinal plant traditionally known for treating malaria. Phytochemically, benzylisoquinolines and bisbenzylisoquinolines are the major classes of alkaloids reported from this plant. In silico molecular docking revealed prominent interactions of bisbenzylisoquinolines such as hayatinine and curine with Pfdihydrofolate reductase (-6.983 Kcal/mol and -6.237 Kcal/mol), PfcGMP-dependent protein kinase (-6.652 Kcal/mol and -7.158 Kcal/mol), and Pfprolyl-tRNA synthetase (-7.569 Kcal/mol and -7.122 Kcal/mol). The binding affinity of hayatinine and curine with identified antimalarial targets was further evaluated using MD-simulation analysis. Among the identified antimalarial targets, the RMSD, RMSF, the radius of gyration, and PCA indicated the formation of stable complexes of hayatinine and curine with Pfprolyl-tRNA synthetase. The outcomes of in silico investigation putatively suggested that bisbenzylisoquinolines may act on the translation of the Plasmodium parasite to exhibit antimalarial potency.


Assuntos
Aminoacil-tRNA Sintetases , Antimaláricos , Benzilisoquinolinas , Cissampelos , Malária , Plantas Medicinais , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Cissampelos/química , Malária/tratamento farmacológico
2.
BMC Complement Med Ther ; 22(1): 114, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459166

RESUMO

BACKGROUND: Viral infections have a history of abrupt and severe eruptions through the years in the form of pandemics. And yet, definitive therapies or preventive measures are not present. Herbal medicines have been a source of various antiviral compounds such as Oseltamivir, extracted using shikimic acid from star anise (Illicium verum) and Acyclovir from Carissa edulis are FDA (Food and Drug Administration) approved antiviral drugs. In this study, we dissect the anti-coronavirus infection activity of Cissampelos pareira L (Cipa) extract using an integrative approach. METHODS: We analysed the signature similarities between predicted antiviral agents and Cipa using the connectivity map ( https://clue.io/ ). Next, we tested the anti-SARS-COV-2 activity of Cipa in vitro. Molecular docking analyses of constituents of with key targets of SARS-CoV2 protein viz. spike protein, RNA­dependent RNA­polymerase (RdRp) and 3C­like proteinase. was also performed. A three-way comparative analysis of Cipa transcriptome, COVID-19 BALF transcriptome and CMAP signatures of small compounds was also performed. RESULTS: Several predicted antivirals showed a high positive connectivity score with Cipa such as apcidin, emetine, homoharringtonine etc. We also observed 98% inhibition of SARS-COV-2 replication in infected Vero cell cultures with the whole extract. Some of its prominent pure constituents e.g. pareirarine, cissamine, magnoflorine exhibited 40-80% inhibition. Comparison of genes between BALF and Cipa showed an enrichment of biological processes like transcription regulation and response to lipids, to be downregulated in Cipa while being upregulated in COVID-19. CMAP also showed that Triciribine, torin-1 and VU-0365114-2 had positive connectivity with BALF 1 and 2, and negative connectivity with Cipa. Amongst all the tested compounds, Magnoflorine and Salutaridine exhibited the most potent and consistent strong in silico binding profiles with SARS-CoV2 therapeutic targets.


Assuntos
Tratamento Farmacológico da COVID-19 , Cissampelos , Antivirais/farmacologia , Cissampelos/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , RNA Viral , SARS-CoV-2
3.
Molecules ; 27(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163898

RESUMO

Aphis craccivora Koch is a polyphagous and major pest of leguminous crops causing significant damage by reducing the yield. Repeated application of synthetic insecticides for the control of aphids has led to development of resistance. Therefore, the present study aimed to screen the insecticidal activity of root/stem extracts/fractions, and pure molecules from Cissampelos pareira Linnaeus against A. craccivora for identification of lead(s). Among root extract/fractions, the n-hexane fraction was found most effective (LC50 = 1828.19 mg/L) against A. craccivora, followed by parent extract (LC50 = 2211.54 mg/L). Among stem extract/fractions, the n-hexane fraction (LC50 = 1246.92 mg/L) was more effective than the water and n-butanol fractions. Based on GC and GC-MS analysis, among different compounds identified in the n-hexane fraction of root and stem, ethyl palmitate (known to possess insecticidal activity) was present in the highest concentration (24.94 to 52.95%) in both the fractions. Among pure molecules, pareirarineformate was found most effective (LC50 = 1491.93 mg/L) against A. craccivora, followed by cissamine (LC50 = 1556.31 mg/L). Parent extract and fractions of C. pareira possess promising activity against aphid. Further, field bio-efficacy studies are necessary to validate the current findings for the development of botanical formulation.


Assuntos
Afídeos , Cissampelos , Inseticidas , Animais , Inseticidas/farmacologia , Extratos Vegetais/farmacologia
4.
J Ethnopharmacol ; 287: 114931, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34942322

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum heterophyllum Wall. ex Royle is a traditionally important medicinal plant having numerous therapeutic actions as documented in Ayurveda. This plant is traditionally known for combating worm infestation, fever, respiratory tract disease, vomiting, diarrhoea, diabetes, skin disorders, anaemia, and joint disorders. Further, it has been used alone and in combination with other plants to prepare various anti-malarial formulations. However, there is no report on the assessment of its anti-plasmodial activity, and the metabolite(s) responsible for this activity. AIM OF THE STUDY: The main aim of this study was to conduct phytochemical investigation of A. heterophyllum roots for the preparation of extract, fractions, and isolation of pure molecules to identify active fractions/molecules responsible for the anti-plasmodial activity, and development of UHPLC-DAD based analytical method which can be used for the quantification of marker compounds in the extracts and fractions. MATERIALS AND METHODS: Hydroalcoholic extract (1:1 v/v) and fractions (n-hexane, chloroform, ethyl acetate, n-butanol, and water) were prepared from the dried powdered roots of A. heterophyllum. Fractions were further subjected to silica gel column chromatography to isolate pure specialized secondary metabolites from this plant. All extracts, fractions, and pure molecules were evaluated against the chloroquine resistant Pf INDO and chloroquine sensitive Pf3D7 strains in culture for calculating their IC50 values. UHPLC-DAD based analytical method was also developed for the first time for the quantification of marker compounds and quality assessment of this commercially important Himalayan medicinal plant. RESULTS: Phytochemical investigation of A. heterophyllum root led to the isolation of six specialized metabolites viz. 2-O-cinnamoyl hetisine (1), atisinium (2), 4-oxabicyclo [3.2.2] nona-1(7),5,8-triene (3), atisinium cinnamate (4), aconitic acid (5), and atisinium formate (6). Compound 1 is a new hetisine type diterpenoid alkaloid, compounds 4 and 6 are new counter ionic forms observed with atisinium ion, and compound 3 is being reported for the first time from this genus. Chloroform fraction was found to be the most active with IC50 (µg/mL) 1.01 (Pf INDO) and 1.32 (Pf3D7). The molecule 2-O-cinnamoyl hetisine (1), a new diterpenoid alkaloid isolated from chloroform fraction, showed promising antiplasmodial activities with IC50 (µM) 1.92 (Pf INDO) and 10.8 (Pf 3D7). The activity of chloroform fraction was further validated by the developed UHPLC-DAD based method as the quantity of 2-O-cinnamoyl hetisine (1) was higher in the chloroform fraction (≅200 mg/g) than in all other fractions (<7 mg/g). Atisinium (2) and 2-O-cinnamoyl hetisine (1) were found to be the main marker compounds of this plant based on quantity and antiplasmodial activity, respectively. CONCLUSION: This study provides the scientific rationale for the traditional use of this plant in treating malaria. Further, this study revealed that the anti-malarial potential of this plant might be due to the presence of diterpenoid alkaloids.


Assuntos
Aconitum/química , Alcaloides/farmacologia , Diterpenos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Alcaloides/administração & dosagem , Alcaloides/isolamento & purificação , Antimaláricos/administração & dosagem , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Cloroquina/farmacologia , Cromatografia Líquida de Alta Pressão , Diterpenos/administração & dosagem , Diterpenos/isolamento & purificação , Concentração Inibidora 50 , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas
5.
Sci Rep ; 11(1): 20095, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635729

RESUMO

Bioactive fractions obtained from medicinal plants which have been used for the treatment of multiple diseases could exert their effects by targeting common pathways. Prior knowledge of their usage could allow us to identify novel molecular links. In this study, we explored the molecular basis of action of one such herbal formulation Cissampelos pareira L. (Cipa), used for the treatment of female hormone disorders and fever. Transcriptomic studies on MCF7 cell lines treated with Cipa extract carried out using Affymetrix arrays revealed a downregulation of signatures of estrogen response potentially modulated through estrogen receptor α (ERα). Molecular docking analysis identified 38 Cipa constituents that potentially bind (ΔG < - 7.5) with ERα at the same site as estrogen. The expression signatures in the connectivity map ( https://clue.io/; ) revealed high positive scores with translation inhibitors such as emetine (score: 99.61) and knockdown signatures of genes linked to the antiviral response such as ribosomal protein RPL7 (score: 99.92), which is a reported ERα coactivator. Further, gene knockdown experiments revealed that Cipa exhibits antiviral activity in dengue infected MCF7 cells potentially modulated through estrogen receptor 1. This approach reveals a novel pathway involving the ESR1-RPL7 axis which could be a potential target in dengue viral infection.


Assuntos
Antivirais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cissampelos/química , Dengue/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Extratos Vegetais/farmacologia , Transcriptoma/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/virologia , Dengue/metabolismo , Dengue/patologia , Dengue/virologia , Vírus da Dengue , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Células MCF-7
6.
J Ethnopharmacol ; 274: 113850, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33485976

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cissampelos pareira, a well-known medicinal climber-plant of the Menispermaceae family, has been extensively used in the traditional medicinal system since the ancient time for the treatment of numerous diseases such as ulcer, wound, rheumatism, fever, asthma, cholera, diarrhoea, inflammation, snakebite, malaria, rabies, and also recommended for blood purification. AIM OF THE REVIEW: The main purpose of this review is to provide updated information on ethnopharmacology, phytochemistry, chromatographic and spectroscopic analysis, pharmacology, and toxicology of C. pareira along with the possible future research. This information will help to provide a foundation for plant-based drug discovery in the near future. MATERIAL AND METHODS: The online databases such as Scifinder, Web of Science, PubMed, and Google Scholar were used to collect electronically available literature data on C. pareira. Ayurveda text is searched for the traditional uses of this plant in India. The published books are also searched for the information on this plant. Our search was based on traditional uses, botany, phytochemistry, and pharmacological potential by using "Cissampelos pareira" as the keyword. RESULTS: To date, approximately 54 phytomolecules have been isolated and characterized from C. pareira including mainly isoquinoline alkaloids along with few flavonoids, flavonoid glycosides, and fatty acids. The crude extracts of C. pareira have shown various pharmacological activities such as antipyretic, anti-inflammatory, antiarthritic, antiulcer, antidiabetic, anticancer, antifertility, antimicrobial, antioxidant, antivenom, antimalarial, and immunomodulatory, etc. The chemical fingerprinting of C. pareira carried out using HPTLC, HPLC, UPLC, LC-MS, and GC-MS, revealed the presence of alkaloids (isoquinoline alkaloids), fatty acids, and flavonoid glycosides. Moreover, the toxicological assessment of C. pareira has been moderately investigated, which requires further comprehensive studies. CONCLUSION: Comprehensive literature survey reveals that till date, remarkable growth has been made on phytochemistry and pharmacology of C. pareira reflecting the great medicinal potential of this plant. Although some of the traditional uses have been well clarified and documented by modern pharmacological analysis, the correlation between its pharmacological activities and particular phytoconstituents still needs to be validated. Furthermore, there is partial data available on most of the pharmacological studies, along with incomplete toxicological screening. Future research needs to pay more attention to pharmacological studies of C. pareira via pre-clinical and clinical trials. Additionally, scientific validation of traditional knowledge of C. pareira is vital for ensuring safety, efficacy, and mechanism of action before clinical uses.


Assuntos
Cissampelos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Bases de Dados Factuais , Humanos , Ayurveda , Compostos Fitoquímicos/química , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Plantas Medicinais/química , Plantas Medicinais/toxicidade
7.
J Ethnopharmacol ; 262: 113185, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726676

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cissampelos pareira is used traditionally in India as a remedy for the treatment of various diseases including malaria but the active ingredients responsible for antiplasmodial activity have not yet been investigated. AIM OF THE STUDY: The identification and quantification of compounds responsible for antiplasmodial activity in different parts (leaf, stem and root) of C. pareira is the target of current study. MATERIAL AND METHODS: The hydro ethanolic parent extracts of different parts of C. pareira and fractions prepared from these extracts were evaluated against Pf3D7 (chloroquine sensitive) and PfINDO (chloroquine resistance) strains in culture to quantify the IC50 for extracts and fractions. Promising fractions of root part of plant were subjected to silica gel column chromatography to obtain pure compounds and their structures were elucidated by detailed spectroscopic analysis. Pure compounds were also tested against Pf3D7 and PfINDO strains. A rapid and simple UPLC-DAD method was developed for the identification and quantification of pharmaceutically important metabolites of C. pareira. RESULTS: Among different extracts, the hydro ethanolic extract of root part of C. pareira was found most active with IC50 values (µg/ml) of 1.42 and 1.15 against Pf 3D7 and Pf INDO, respectively. Tested against Pf 3D7 the most potent fractions were root ethyl acetate fraction (IC50 4.0 µg/ml), stem water fraction (IC50 4.4 µg/ml), and root water fraction (IC50 8.5 µg/ml). Further, phytochemical investigation of active fractions of root part led to the isolation and characterization of a new isoquinoline alkaloid, namely pareirarine (8), along with five known compounds magnoflorine (5), magnocurarine (10), salutaridine (11), cissamine (13) and hayatinine (15). Hayatinine (15), a bisbenzylisoquinoline alkaloid, isolated from root ethyl acetate fraction was most promising compound with IC50 of 0.41 µM (Pf INDO) and 0.509 µM (Pf 3D7). Magnocurarine (10) and cissamine (13) were also found active with IC50 values of 12.51 and 47.34 µM against Pf INDO and 12.54 and 8.76 µM against Pf 3D7, respectively. A total of thirty compounds were detected in studied extracts and fractions, structures were assigned to 15 of these and five of these biologically important compounds were quantified. Isolation of saluteridine (11) from C. pareira and the evaluation of antiplasmodial activity of pure compound from C. pariera is disclosed for the first time. CONCLUSION: This study concludes that the antimalarial potential of C. pareira may be attributed to isoquinoline type alkaloids present in this plant and also provides the scientific evidence for the traditional use of this plant in treatment of malaria.


Assuntos
Antimaláricos/química , Antimaláricos/isolamento & purificação , Cissampelos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Células HEK293 , Humanos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Plasmodium falciparum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA