Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353331

RESUMO

Chemoresistance is the adaptation of cancer cells against therapeutic agents. When exhibited by cancer cells, chemoresistance helps them to avoid apoptosis, cause relapse, and metastasize, making it challenging for chemotherapeutic agents to treat cancer. Various strategies like dosage modification of drugs, nanoparticle-based delivery of chemotherapeutics, antibody-drug conjugates, and so on are being used to target and reverse chemoresistance, one among such is combination therapy. It uses the combination of two or more therapeutic agents to reverse multidrug resistance and improve the effects of chemotherapy. Phytochemicals are known to exhibit chemosensitizing properties and are found to be effective against various cancers. Tocotrienols (T3) and tocopherols (T) are natural bioactive analogs of vitamin E, which exhibit important medicinal value and potential curative properties apart from serving as an antioxidant and nutrient supplement. Notably, T3 exhibits a variety of pharmacological activities like anticancer, anti-inflammatory, antiproliferative, and so on. The chemosensitizing property of tocotrienol is exhibited by modulating several signaling pathways and molecular targets involved in cancer cell survival, proliferation, invasion, migration, and metastasis like NF-κB, STATs, Akt/mTOR, Bax/Bcl-2, Wnt/ß-catenin, and many more. T3 sensitizes cancer cells to chemotherapeutic drugs including cisplatin, doxorubicin, and paclitaxel increasing drug concentration and cytotoxicity. Discussed herewith are the chemosensitizing properties of tocotrienols on various cancer cell types when combined with various drugs and biological molecules.

2.
ACS Pharmacol Transl Sci ; 6(4): 447-518, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37082752

RESUMO

Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.

3.
Biomolecules ; 12(9)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36139025

RESUMO

There have been magnificent advancements in the understanding of molecular mechanisms of chronic diseases over the past several years, but these diseases continue to be a considerable cause of death worldwide. Most of the approved medications available for the prevention and treatment of these diseases target only a single gene/protein/pathway and are known to cause severe side effects and are less effective than they are anticipated. Consequently, the development of finer therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive pharmacological properties. OA modulates the important signaling pathways, including NF-κB, MAPK, ERK1/2, Wnt/ß-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-ß, MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which makes it an engrossing compound for research. Numerous preclinical and clinical studies also displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation, neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic molecular mechanisms of its action.


Assuntos
NF-kappa B , beta Catenina , Anti-Inflamatórios/farmacologia , Caspases , Doença Crônica , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , beta Catenina/metabolismo
4.
Phytomedicine ; 105: 154369, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985182

RESUMO

BACKGROUND: Regardless of major advances in diagnosis, prevention and treatment strategies, cancer is still a foreboding cause due to factors like chemoresistance, radioresistance, adverse side effects and cancer recurrence. Therefore, continuous development of unconventional approaches is a prerequisite to overcome foregoing glitches. Natural products have found their way into treatment of serious health conditions, including cancer since ancient times. The compound oroxylin A (OA) is one among those with enormous potential against different malignancies. It is a flavonoid obtained from the several plants such as Oroxylum indicum, Scutellaria baicalensis and S. lateriflora, Anchietea pyrifolia, and Aster himalaicus. PURPOSE: The main purpose of this study is to comprehensively elucidate the anticancerous effects of OA against various malignancies and unravel their chemosensitization and radiosensitization potential. Pharmacokinetic and pharmacodynamic studies of OA have also been investigated. METHOD: The literature on antineoplastic effects of OA was searched in PubMed and Scopus, including in vitro and in vivo studies and is summarized based on a systematic review protocol prepared according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The term "oroxylin A" was used in combination with "cancer" and all the title, abstracts and keywords appeared were considered. RESULTS: In Scopus, a total of 157 articles appeared out of which 103 articles that did not meet the eligibility criteria were eliminated and 54 were critically evaluated. In PubMed, from the 85 results obtained, 26 articles were eliminated and 59 were included in the preparation of this review. Mounting number of studies have illustrated the anticancer effects of OA, and its mechanism of action. CONCLUSION: OA is a promising natural flavonoid possessing wide range of pleiotropic properties and is a potential anticancer agent. It has a great potential in the treatment of multiple cancers including brain, breast, cervical, colon, esophageal, gall bladder, gastric, hematological, liver, lung, oral, ovarian, pancreatic and skin. However, lack of pharmacokinetic studies, toxicity assessments, and dose standardization studies and adverse effects limit the optimization of this compound as a therapeutic agent.


Assuntos
Bignoniaceae , Recidiva Local de Neoplasia , Flavonoides , Humanos , Transdução de Sinais
5.
Nutrients ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631173

RESUMO

Tendinitis (tendinopathy) is a pro-inflammatory and painful tendon disease commonly linked with mechanical overuse and associated injuries, drug abuse, and lifestyle factors (including poor diet and physical inactivity) that causes significant healthcare expenditures due to its high incidence. Nuclear factor kappa B (NF-κB) is one of the major pro-inflammatory transcription factors, along with other inflammation signaling pathways, triggered by a variety of stimuli, including cytokines, endotoxins, physical and chemical stressors, hypoxia, and other pro-inflammatory factors. Their activation is known to regulate the expression of a multitude of genes involved in inflammation, degradation, and cell death. The pathogenesis of tendinitis is still poorly understood, whereas efficient and sustainable treatment is missing. Targeting drug suppression of the key inflammatory regulators represents an effective strategy for tendinitis therapy, but requires a comprehensive understanding of their principles of action. Conventional monotherapies are often ineffective and associated with severe side effects in patients. Therefore, agents that modulate multiple cellular targets represent therapeutic treatment potential. Plant-derived nutraceuticals have been shown to act as multi-targeting agents against tendinitis via various anti-oxidant and anti-inflammatory mechanisms, whereat they were able to specifically modulate numerous signaling pathways, including NF-κB, p38/MAPK, JNK/STAT3, and PI3K/Akt, thus down-regulating inflammatory processes. This review discusses the utility of herbal nutraceuticals that have demonstrated safety and tolerability as anti-inflammatory agents for the prevention and treatment of tendinitis through the suppression of catabolic signaling pathways. Limitations associated with the use of nutraceuticals are also described.


Assuntos
NF-kappa B , Tendinopatia , Anti-Inflamatórios/uso terapêutico , Suplementos Nutricionais , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Tendinopatia/tratamento farmacológico
6.
Phytother Res ; 36(5): 1854-1883, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35102626

RESUMO

The medicinal plant Scutellaria baicalensis, commonly known as Chinese skullcap or Huang-Qin, has been used as a traditional medicine for several thousand years. The roots of this plant contain bioactive compounds, such as wogonin (WOG), wogonoside, baicalein, and baicalin. The aim of this article is to evaluate the therapeutic potential and mechanisms of action of WOG against different cancers. Numerous in vitro and in vivo studies have revealed that WOG exerts immense therapeutic potential against bladder cancer, breast cancer, cholangiocarcinoma, cervical cancer, colorectal cancer, gallbladder cancer, gastric cancer, glioblastoma, head and neck cancer, hepatic cancer, leukemia, lung cancer, lymphoma, melanoma, multiple myeloma, neuroblastoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate cancer, and renal cancer by regulating various cell signaling pathways. WOG, in combination with established chemotherapeutic drugs, improves the efficacy of treatment and lowers toxicity. Nevertheless, human trials are warranted to validate these findings. Numerous preclinical studies, combined with an extensive margin of safety and no severe side effects, underscore WOG's therapeutic potential as an anticancer drug. These studies propound the use of WOG as a potential anticancer candidate; however, further high-quality studies are required to firmly establish the clinical efficacy of WOG for the prevention and treatment of human malignancies.


Assuntos
Medicamentos de Ervas Chinesas , Flavanonas , Neoplasias , Scutellaria , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavonoides , Humanos , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Extratos Vegetais/farmacologia , Scutellaria baicalensis
7.
Crit Rev Oncog ; 27(3): 33-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37183937

RESUMO

Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.


Assuntos
Curcumina , Neoplasias , Humanos , Curcumina/uso terapêutico , Suplementos Nutricionais , NF-kappa B/metabolismo , Apoptose , Anti-Inflamatórios/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle
8.
J Biochem Mol Toxicol ; 36(2): e22950, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34842329

RESUMO

Chronic diseases are a serious health concern worldwide, especially in the elderly population. Most chronic diseases like cancer, cardiovascular ailments, neurodegenerative disorders, and autoimmune diseases are caused due to the abnormal functioning of multiple signaling pathways that give rise to critical anomalies in the body. Although a lot of advanced therapies are available, these have failed to entirely cure the disease due to their less efficacy. Apart from this, they have been shown to manifest disturbing side effects which hamper the patient's quality of life to the extreme. Since the last few decades, extensive studies have been done on natural herbs due to their excellent medicinal benefits. Components present in natural herbs target multiple signaling pathways involved in diseases and therefore hold high potential in the prevention and treatment of various chronic diseases. Embelin, a benzoquinone, is one such agent isolated from Embelia ribes, which has shown excellent biological activities toward several chronic ailments by upregulating a number of antioxidant enzymes (e.g., SOD, CAT, GSH, etc.), inhibiting anti-apoptotic genes (e.g., TRAIL, XIAP, survivin, etc.), modulating transcription factors (e.g., NF-κB, STAT3, etc.) blocking inflammatory biomarkers (e.g., NO, IL-1ß, IL-6, TNF-α, etc.), monitoring cell cycle synchronizing genes (e.g., p53, cyclins, CDKs, etc.), and so forth. Several preclinical studies have confirmed its excellent therapeutic activities against malicious diseases like cancer, obesity, heart diseases, Alzheimer's, and so forth. This review presents an overview of embelin, its therapeutic prospective, and the molecular targets in different chronic diseases.


Assuntos
Benzoquinonas/uso terapêutico , Embelia/química , Cardiopatias/tratamento farmacológico , Neoplasias/tratamento farmacológico , Obesidade/tratamento farmacológico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Benzoquinonas/química , Doença Crônica , Cardiopatias/metabolismo , Humanos , Neoplasias/metabolismo , Obesidade/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
9.
Phytother Res ; 35(12): 6768-6801, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34498308

RESUMO

The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.


Assuntos
Antineoplásicos , Curcumina , Neoplasias , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Doença Crônica , Curcuma , Curcumina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico
10.
ACS Pharmacol Transl Sci ; 4(2): 647-665, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860191

RESUMO

Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-ß, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.

11.
Phytother Res ; 35(3): 1443-1455, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33210408

RESUMO

A 6-week, randomized, open-label, active-controlled clinical trial was conducted to evaluate the influence of a low-dose curcumagalactomannosides (CGM) (400 mg once daily) in OA subjects. The treatment was compared with a standard combination of 500 mg glucosamine hydrochloride (GLN) and 415 mg chondroitin sulphate (CHN), supplied as a single oral dose twice a day. Out of 84 subjects randomized, 72 subjects who have completed the study were evaluated for the safety and efficacy of the treatments at baseline and subsequent visits (day 28 and 42), by measuring walking performance, VAS, KPS, and WOMAC scores. CGM exhibited 47.02, 21.43, and 206% improvement in VAS, KPS, and walking performance, respectively, compared to the baseline. Similarly, there was 31.17, 32.93, 36.44, and 35% improvement in the pain, stiffness, physical function, and total WOMAC scores. CGM also caused a substantial reduction in the serum inflammatory marker levels. The results indicate that a short-term supplementation of a low dosage CGM exerted superior beneficial effects than a high-dosage CHN-GLN combination in alleviating the pain and symptoms of OA subjects. Further clinical trials of extended duration in a larger population is required to substantiate the efficacy of CGM in the long-term management of OA.


Assuntos
Curcumina/uso terapêutico , Suplementos Nutricionais/análise , Glucosamina/uso terapêutico , Osteoartrite do Joelho/tratamento farmacológico , Curcumina/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
12.
Nat Prod Res ; 35(13): 2145-2156, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31526148

RESUMO

Sixteen new analogues were synthesized from ricinine and tested alongside with seven known analogues for their cytotoxic activity against oral cancer (SAS cells) and normal epithelial cells (L132 cells). In contrast to 5-FU, the synthesized ricinine analogues did not show toxicity to normal cells. However, some of them inhibited the proliferation of oral cancer cells at 25 µM as evident from the MTT assay results. Ricinine analogue (19) was shown to be the most active derivative (69.22% inhibition). Potential targets involved in the oral cancer inhibitory activity of compound 19 were investigated using in-silico studies and western blot analysis. PTP1B was predicted to be a target for ricinine using reverse docking approach. This prediction was confirmed by western blot analysis that revealed the downregulation of PTP1B protein by compound 19. Moreover, it showed downregulation of COX-2 which is also extensively expressed in oral cancer.


Assuntos
Alcaloides/síntese química , Alcaloides/farmacologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Piridonas/síntese química , Piridonas/farmacologia , Alcaloides/química , Antineoplásicos/farmacologia , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Piridonas/química , Relação Estrutura-Atividade
13.
Life Sci ; 260: 118182, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781063

RESUMO

BACKGROUND: Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM: To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD: A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS: The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE: Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.


Assuntos
Doença Crônica/tratamento farmacológico , Diosgenina/uso terapêutico , Animais , Disponibilidade Biológica , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Fenômenos Químicos , Doença Crônica/prevenção & controle , Diosgenina/análogos & derivados , Diosgenina/farmacocinética , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fitoterapia , PubMed , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Trigonella
14.
J Altern Complement Med ; 26(10): 945-955, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32678677

RESUMO

Objective: A combination of curcumagalactomannosides (CGM) (400 mg) with glucosamine hydrochloride (GLN) (500 mg) was evaluated against a standard dietary supplement combination chondroitin sulfate (CHN) (415 mg)/GLN (500 mg) for their effectiveness in alleviating the pain and symptoms among osteoarthritic subjects. Design: Randomized, double-blinded and active-controlled study. Settings/Location: The study was conducted in a hospital-based research center in Vadodara, Gujarat, India. Subjects: Eighty subjects (38 males and 42 females), with confirmed osteoarthritis (OA) (Class I-III), were randomized into two parallel groups designated as Group I (CGM-GLN) and Group II (CHN-GLN). Interventions: All the study subjects were supplemented with their corresponding intervention capsules (ether CGM along with GLN or CHN along with GLN), as a single oral dose twice a day, once in the morning 10-15 min before breakfast and again in the evening before dinner, for 84 days. Outcome measures: A validated treadmill uphill walking protocol was used for the study, and the efficiency of supplementation was evaluated using visual analogue scale (VAS) score, Karnofsky Performance Scale (KPS) score, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire at the baseline, 28th, and 84th day following the treatment. Mechanism of action of CGM-GLN combination was analyzed by measuring the levels of serum inflammatory markers interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), and soluble vascular cell adhesion molecule-1 (sVCAM) at the baseline and 84th day. Results: CGM-GLN was found to offer significant beneficial effects to pain, stiffness, and physical function of OA subjects compared with CHN-GLN, which was evident from the improvement in walking performance, VAS score, KPS score, and WOMAC score. The efficiency of CGM-GLN was almost double compared with the CHN-GLN by the end of the study (84th day). A significant reduction of inflammatory serum marker levels was observed among CGM-GLN subjects compared with CHN-GLN subjects. Compared with the baseline, CGM-GLN produced 54.52%, 59.08%, and 22.03% reduction in IL-1ß, IL-6, and sVCAM levels, respectively. Whereas CHN-GLN group of subjects expressed only 23.17%, 21.38%, and 6.82% reduction in IL-1ß, IL-6, and sVCAM levels, respectively. Conclusions: In conclusion, the present study demonstrated the potential benefits of CGM-GLN supplements in alleviating the symptoms and function of OA subjects compared with the standard CHN-GLN treatment. The augmented efficacy of CGM-GLN combination could be attributed to the enhanced anti-inflammatory effect of CGM.


Assuntos
Sulfatos de Condroitina/uso terapêutico , Curcuma , Suplementos Nutricionais/estatística & dados numéricos , Glucosamina/uso terapêutico , Osteoartrite/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Índice de Gravidade de Doença , Resultado do Tratamento
15.
Molecules ; 25(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408623

RESUMO

According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.


Assuntos
Antraquinonas/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Fallopia multiflora/química , Neoplasias , Raízes de Plantas/química , Rheum/química , Antraquinonas/química , Antineoplásicos Fitogênicos/química , Feminino , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/prevenção & controle
16.
Explor Target Antitumor Ther ; 1(5): 313-342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36046484

RESUMO

Cancer is one of the most dreadful diseases in the world with a mortality of 9.6 million annually. Despite the advances in diagnosis and treatment during the last couple of decades, it still remains a serious concern due to the limitations associated with currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. The importance of medicinal plants as primary healthcare has been well-known from time immemorial against various human diseases, including cancer. Commiphora wightii that belongs to Burseraceae family is one such plant which has been used to cure various ailments in traditional systems of medicine. This plant has diverse pharmacological properties such as antioxidant, antibacterial, antimutagenic, and antitumor which mostly owes to the presence of its active compound guggulsterone (GS) that exists in the form of Z- and E-isomers. Mounting evidence suggests that this compound has promising anticancer activities and was shown to suppress several cancer signaling pathways such as NF-κB/ERK/MAPK/AKT/STAT and modulate the expression of numerous signaling molecules such as the farnesoid X receptor, cyclin D1, survivin, caspases, HIF-1α, MMP-9, EMT proteins, tumor suppressor proteins, angiogenic proteins, and apoptotic proteins. The current review is an attempt to summarize the biological activities and diverse anticancer activities (both in vitro and in vivo) of the compound GS and its derivatives, along with its associated mechanism against various cancers.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31747377

RESUMO

Background According to GLOBOCAN 2018, oral cancer was reported as the second highest cancer prevalent in India. Despite the several therapies available for oral cancer treatment, tumor recurrence and distant metastasis persist. This study investigates the anticancer potential of Persicaria odorata, commonly known as Vietnamese coriander, used widely in traditional systems of medicine for the treatment of inflammation, stomach ailments, tumors, etc. Methods The crude methanolic extract of P. odorata (MPo) was prepared. The anticancer properties of MPo on SAS cells and other human oral squamous cell carcinoma cell line were evaluated using in vitro experimental conditions. The phytochemical constituents present in the MPo were also determined. Results Persicaria odorata possesses antiproliferative, antisurvival, antimetastatic activities, and induced cell cycle arrest in the G2 phase. It inhibited Akt-mammalian target of rapamycin (mTOR) signaling pathway and also downregulated the expression of essential proteins that are involved in tumorigenesis such as cyclin D1, cyclooxygenase 2 (COX2), survivin, matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A). Moreover, the presence of flavonoids and quinones also revealed the anticancer activity of the plant. Conclusion Overall, our study concludes that P. odorata exhibits its anticancer properties through the downregulation of Akt/mTOR signaling pathway in a dose-dependent manner.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Coriandrum/química , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fase G2/efeitos dos fármacos , Humanos , Índia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vietnã
18.
J Tradit Complement Med ; 9(4): 346-352, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453131

RESUMO

Rheumatoid arthritis (RA) is an inflammatory disease that cause chronic pain, disability and joint destruction. The present placebo controlled randomized study aimed to evaluate the efficacy of a novel hydrogenated curcuminoid formulation-CuroWhite™, in rheumatoid arthritis (RA) patients. Twenty four RA patients were randomized in 1:1:1 ratio to receive 250 mg, 500 mg CuroWhite or placebo as one capsule a day, over a period of three months. Improvement in the ACR response, changes in disease activity assessed using the DAS 28 score, change in physical function assessed on change in ESR, CRP, RF values were evaluated before and after the study. Results suggested that patients who received CuroWhite both low and high doses reported statistically significant changes in their clinical symptoms towards end of the study when compared with placebo. There were significant changes in DAS28 (50-64%) VAS (63-72%) ESR (88-89%), CRP (31-45%) RF (80-84%) values and ACR response for CuroWhite groups in comparison with placebo. Thus, CuroWhite acts as the analgesic and anti-inflammatory product for management of RA by the reduction of the inflammatory action which was confirmed by improvement in ESR, CRP, VAS, RF, DAS-28 and ACR responses. CuroWhite was significantly effective against RA with highly safe without serious side effects and well tolerated.

19.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443458

RESUMO

Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson's disease, Alzheimer's, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.


Assuntos
Triterpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Doença Crônica/tratamento farmacológico , Humanos , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Triterpenos/administração & dosagem , Triterpenos/química , Triterpenos/farmacocinética
20.
Expert Opin Drug Metab Toxicol ; 15(9): 705-733, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31361978

RESUMO

Introduction: Since ancient times, turmeric has been used in several folklore remedies against various ailments. The principal component of turmeric is curcumin and its efficacy has been advocated in various in vitro, in vivo and clinical studies for different chronic diseases. However, some studies suggest that curcumin bioavailability is a major problem. Areas covered: This article discusses over 200 clinical studies with curcumin that have demonstrated the pronounced protective role of this compound against cardiovascular diseases, inflammatory diseases, metabolic diseases, neurological diseases, skin diseases, liver diseases, various types of cancer, etc. The review also describes the combination of curcumin with many natural and synthetic compounds as well as various formulations of curcumin that have shown efficacy in multiple clinical studies. Expert opinion: The therapeutic potential of curcumin, as demonstrated by clinical trials has overpowered the myth that poor bioavailability of curcumin poses a problem. Low curcumin bioavailability in certain studies has been addressed by using higher concentrations of curcumin within nontoxic limits. Moreover, curcumin, in combination with other compounds or as formulations, has shown enhanced bioavailability. Hence, bioavailability is not a problem in the curcumin-mediated treatment of chronic diseases. Therefore, this golden nutraceutical presents a safe, low-cost and effective treatment modality for different chronic diseases.


Assuntos
Curcuma/química , Curcumina/administração & dosagem , Suplementos Nutricionais , Animais , Disponibilidade Biológica , Doença Crônica , Ensaios Clínicos como Assunto , Curcumina/farmacocinética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA