Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Adv Nutr ; 15(2): 100163, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110000

RESUMO

Migraine is a highly prevalent neurologic disorder with prevalence rates ranging from 9% to 18% worldwide. Current pharmacologic prophylactic strategies for migraine have limited efficacy and acceptability, with relatively low response rates of 40% to 50% and limited safety profiles. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered promising therapeutic agents for migraine prophylaxis. The aim of this network meta-analysis (NMA) was to compare the efficacy and acceptability of various dosages of EPA/DHA and other current Food and Drug Administration-approved or guideline-recommended prophylactic pharmacologic interventions for migraine. Randomized controlled trials (RCTs) were eligible for inclusion if they enrolled participants with a diagnosis of either episodic or chronic migraine. All NMA procedures were conducted under the frequentist model. The primary outcomes assessed were 1) changes in migraine frequency and 2) acceptability (i.e., dropout for any reason). Secondary outcomes included response rates, changes in migraine severity, changes in the frequency of using rescue medications, and frequency of any adverse events. Forty RCTs were included (N = 6616; mean age = 35.0 y; 78.9% women). Our analysis showed that supplementation with high dosage EPA/DHA yields the highest decrease in migraine frequency [standardized mean difference (SMD): -1.36; 95% confidence interval (CI): -2.32, -0.39 compared with placebo] and the largest decrease in migraine severity (SMD: -2.23; 95% CI: -3.17, -1.30 compared with placebo) in all studied interventions. Furthermore, supplementation with high dosage EPA/DHA showed the most favorable acceptability rates (odds ratio: 1.00; 95% CI: 0.06, 17.41 compared with placebo) of all examined prophylactic treatments. This study provides compelling evidence that high dosage EPA/DHA supplementation can be considered a first-choice treatment of migraine prophylaxis because this treatment displayed the highest efficacy and highest acceptability of all studied treatments. This study was registered in PROSPERO as CRD42022319577.


Assuntos
Ácidos Graxos Ômega-3 , Transtornos de Enxaqueca , Feminino , Humanos , Adulto , Masculino , Ácidos Graxos Ômega-3/uso terapêutico , Metanálise em Rede , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico/uso terapêutico , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Suplementos Nutricionais
2.
Ageing Res Rev ; 90: 102014, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442370

RESUMO

Sarcopenia frequently occurs with aging and leads to major adverse impacts on activities of daily living and quality of life in elderly individuals. Omega-3 polyunsaturated fatty acid (omega-3 PUFAs) supplements are considered promising therapeutic agents for sarcopenia management; however, the evidence remains inconsistent. We reviewed randomized controlled trials (RCTs) about omega-3 PUFA supplementation in patients with sarcopenia or in those at high risk for sarcopenia. Network meta-analysis (NMA) procedures were conducted using a frequentist model. The primary outcomes were (1) upper-extremity muscle strength and (2) lower-extremity physical function. The NMA of 16 RCTs showed that the high-dose (more than 2.5 g/day omega-3 PUFAs) group yielded the greatest improvement in both upper-extremity muscle strength and lower-extremity physical function [compared to placebo/standard care groups, standardized mean difference (SMD)= 1.68, 95% confidence interval (95%CI)= 0.03-3.33, and SMD= 0.73, 95%CI= 0.16-1.30, respectively], and the effects were reaffirmed in subgroup analyses of placebo-controlled RCTs or those excluding concurrent resistance training programs. None of the investigated omega-3 PUFAs supplementation was associated with significantly increased skeletal muscle mass, fat mass, or overall body weight. Our findings provide a basis for future large-scale RCTs to investigate the dose effects and clinical application of omega-3 PUFA supplementation in sarcopenia management. TRIAL REGISTRATION: The current study was approved by the Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (TSGHIRB No. B-109-29) and registered in PROSPERO (CRD42022347161).


Assuntos
Ácidos Graxos Ômega-3 , Sarcopenia , Humanos , Idoso , Metanálise em Rede , Sarcopenia/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Suplementos Nutricionais
3.
Brain Behav Immun ; 111: 352-364, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150266

RESUMO

Alzheimer's dementia (AD) is a major contributor to global disability, and effective therapies to modify disease progression are currently lacking. The neuro-inflammatory theory is a potential etiology underlying this neurodegenerative disease. Previous randomized, controlled trials (RCTs) have provided inconclusive results regarding efficacy of omega-3 polyunsaturated fatty acids (PUFAs) regimens, which might provide anti-inflammatory benefits in the management of AD, in improving cognitive function among participants with AD. The objective of this frequentist-model based network meta-analysis (NMA) was to evaluate the potential advantages of omega-3 PUFAs and currently FDA-approved medications for AD on overall cognitive function in AD individuals. The primary outcomes were: (1) changes in cognitive function, and (2) acceptability, which refers to all-cause discontinuation. Additionally, secondary outcomes included quality of life, behavioral disturbances and safety/tolerability, which was assessed through the frequency of any reported adverse event. This NMA included 52 RCTs (6 with omega-3 PUFAs and 46 with FDA-approved medications) involving 21,111 participants. The results showed that long-term high-dose (1500-2000 mg/day) of eicosapentaenoic acid (EPA)-dominant omega-3 PUFAs augmented with anti-oxidants had the highest potential for cognitive improvement among all investigated treatments [standardized mean difference = 3.00, 95% confidence intervals (95 %CIs) = 1.84-4.16]. Compared to placebo, omega-3 PUFAs had similar acceptability [odds ratio (OR) = 0.46, 95 %CIs = 0.04 to 5.87] and safety profiles (OR = 1.24, 95 %CIs = 0.66 to 2.33)o. These findings support the potential neurotherapeutic effects of high dosage EPA-dominant omega-3 PUFAs for the amelioration of cognitive decline in patients with AD. Future large-scale, long-term RCTs should focus on different dosages of EPA-dominant omega-3 PUFAs regimens on improving cognitive dysfunction in patients with AD at different levels of inflammatory status and psychopathology.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Humanos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Metanálise em Rede , Ácidos Graxos Ômega-3/uso terapêutico , Cognição , Anti-Inflamatórios/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Clin Cancer Res ; 23(1): 73-80, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27635088

RESUMO

PURPOSE: Glioblastoma is the most malignant primary brain tumor, with a median survival of less than 2 years. More effective therapeutic approaches are needed to improve clinical outcomes. EXPERIMENTAL DESIGN: Glioblastoma patient-derived cells (GPDC) were isolated from patient glioblastomas and implanted in mice to form xenografts. IHC was performed for human Ether-à-go-go-Related Gene (hERG) expression and tumor proliferation. Sphere-forming assays with the hERG blocker E-4031 were performed on a high and low hERG-expressing lines. A glioblastoma tissue microarray (TMA; 115 patients) was used to correlate hERG expression with patient survival. Clinical data were analyzed to determine whether patient survival was affected by incidental administration of hERG inhibitory drugs and the correlative effect of patient glioblastoma hERG expression levels. RESULTS: hERG expression was upregulated in glioblastoma xenografts with higher proliferative indices. High hERG-expressing GPDCs showed a reduction in sphere formation when treated with hERG inhibitors compared with low hERG-expressing GPDCs. Glioblastoma TMA analysis showed worse survival for glioblastoma patients with high hERG expression versus low expression-43.5 weeks versus 60.9 weeks, respectively (P = 0.022). Furthermore, patients who received at least one hERG blocker had a better survival rate compared with patients who did not (P = 0.0015). Subgroup analysis showed that glioblastoma patients with high hERG expression who received hERG blockers had improved survival (P = 0.0458). There was no difference in survival for low hERG-expressing glioblastoma patients who received hERG blockers (P = 0.4136). CONCLUSIONS: Our findings suggest that hERG is a potential glioblastoma survival marker, and that already approved drugs with non-torsadogenic hERG inhibitory activity may potentially be repurposed as adjuvant glioblastoma therapy in high hERG-expressing glioblastoma patients. Clin Cancer Res; 23(1); 73-80. ©2016 AACRSee related commentary by Arcangeli and Becchetti, p. 3.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Piperidinas/administração & dosagem , Piridinas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Canais de Potássio Éter-A-Go-Go/genética , Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Terapia de Alvo Molecular , Esferoides Celulares , Análise Serial de Tecidos , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Endocrinology ; 155(8): 2976-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24877623

RESUMO

The ability of the central nervous system to synthesize steroid hormones has wide-ranging implications for physiology and pathology. Among the proposed roles of neurosteroids is the regulation of the LH surge. This involvement in the estrogen-positive feedback demonstrates the integration of peripheral steroids with neurosteroids. Within the female hypothalamus, estradiol from developing follicles stimulates progesterone synthesis in astrocytes, which activate neural circuits regulating gonadotropin (GnRH) neurons. Estradiol acts at membrane estrogen receptor-α to activate cellular signaling that results in the release of inositol trisphosphate-sensitive calcium stores that are sufficient to induce neuroprogesterone synthesis. The purpose of the present studies was to characterize the estradiol-induced signaling leading to activation of steroid acute regulatory protein (StAR) and transporter protein (TSPO), which mediate the rate-limiting step in steroidogenesis, ie, the transport of cholesterol into the mitochondrion. Treatment of primary cultures of adult female rat hypothalamic astrocytes with estradiol induced a cascade of phosphorylation that resulted in the activation of a calcium-dependent adenylyl cyclase, AC1, elevation of cAMP, and activation of both StAR and TSPO. Blocking protein kinase A activation with H-89 abrogated the estradiol-induced neuroprogesterone synthesis. Thus, together with previous results, these experiments completed the characterization of how estradiol action at the membrane leads to the augmentation of neuroprogesterone synthesis through increasing cAMP, activation of protein kinase A, and the phosphorylation of TSPO and StAR in hypothalamic astrocytes.


Assuntos
Proteínas de Transporte/metabolismo , Estradiol/metabolismo , Hipotálamo/metabolismo , Fosfoproteínas/metabolismo , Progesterona/biossíntese , Receptores de GABA-A/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Ratos , Ratos Long-Evans , Transdução de Sinais
6.
Plant Cell Environ ; 37(6): 1276-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24895754

RESUMO

Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus ('delayed greening'), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.


Assuntos
Fósforo/metabolismo , Proteaceae/fisiologia , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clorofila/metabolismo , Glucose-6-Fosfato/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteaceae/genética , Proteaceae/metabolismo , Proteínas Ribossômicas/metabolismo , Amido/metabolismo
7.
Steroids ; 78(6): 607-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23296142

RESUMO

Regulation of sexual reproduction by estradiol involves the activation of estrogen receptors (ERs) in the hypothalamus. Of the two classical ERs involved in reproduction, ERα appears to be the critical isoform. The role of ERα in reproduction has been found to involve a nuclear ERα that induces a genomic mechanism of action. More recently, a plasma membrane ERα has been shown to trigger signaling pathways involved in reproduction. Mechanisms underlying membrane-initiated estradiol signaling are emerging, including evidence that activation of plasma membrane ERα involves receptor trafficking. The present study examined the insertion of ERα into the plasma membrane of N-38 neurons, an immortalized murine hypothalamic cell line. We identified, using western blotting and PCR that N-38 neurons express full-length 66kDa ERα and a 52kDa ERα spliced variant missing the fourth exon - ERαΔ4. Using surface biotinylation, we observed that treatment of N-38 neurons with estradiol or with a membrane impermeant estradiol elevated plasma membrane ERα protein levels, indicating that membrane signaling increased receptor insertion into the cell membrane. Insertion of ERα was blocked by the ER antagonist ICI 182,780 or with the protein kinase C (PKC) pathway inhibitor bisindolylmaleimide (BIS). Downstream membrane-initiated signaling was confirmed by estradiol activation of PKC-theta (PKCθ) and the release of intracellular calcium. These results indicate that membrane ERα levels in N-38 neurons are dynamically autoregulated by estradiol.


Assuntos
Membrana Celular/metabolismo , Estradiol/metabolismo , Hipotálamo/citologia , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
New Phytol ; 196(4): 1098-1108, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22937909

RESUMO

Proteaceae species in south-western Australia occur on severely phosphorus (P)-impoverished soils. They have very low leaf P concentrations, but relatively fast rates of photosynthesis, thus exhibiting extremely high photosynthetic phosphorus-use-efficiency (PPUE). Although the mechanisms underpinning their high PPUE remain unknown, one possibility is that these species may be able to replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. For six Proteaceae species, we measured soil and leaf P concentrations and rates of photosynthesis of both young expanding and mature leaves. We also assessed the investment in galactolipids, sulfolipids and phospholipids in young and mature leaves, and compared these results with those on Arabidopsis thaliana, grown under both P-sufficient and P-deficient conditions. In all Proteaceae species, phospholipid levels strongly decreased during leaf development, whereas those of galactolipids and sulfolipids strongly increased. Photosynthetic rates increased from young to mature leaves. This shows that these species extensively replace phospholipids with nonphospholipids during leaf development, without compromising photosynthesis. A considerably less pronounced shift was observed in A. thaliana. Our results clearly show that a low investment in phospholipids, relative to nonphospholipids, offers a partial explanation for a high photosynthetic rate per unit leaf P in Proteaceae adapted to P-impoverished soils.


Assuntos
Galactolipídeos/metabolismo , Lipídeos , Fósforo/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteaceae/metabolismo , Solo , Arabidopsis/crescimento & desenvolvimento , Lipídeos/análise , Lipídeos/química , Fósforo/análise , Fósforo/deficiência , Fotossíntese , Folhas de Planta/metabolismo , Solo/análise , Austrália do Sul , Austrália Ocidental
9.
J Neurosci ; 30(39): 12950-7, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20881113

RESUMO

In hypothalamic astrocytes obtained from adult female rats, estradiol rapidly increased free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis. The present study demonstrated that estradiol (1 nm) significantly and maximally stimulated progesterone synthesis within 5 min, supporting a rapid, nongenomic mechanism. The group I metabotropic glutamate receptor (mGluR1a) antagonist LY 367385 [(S)-(+)-a-amino-4-carboxy-2-methylbenzeneacetic acid] attenuated both the estradiol-induced [Ca(2+)](i) release and progesterone synthesis. To investigate membrane-associated estrogen receptors (mERs), agonists for ERα, ERß, STX-activated protein, and GPR30 were compared. The selective ERα agonist propylpyrazole triole (PPT) and STX most closely mimicked the estradiol-induced [Ca(2+)](i) responses, where PPT was more potent but less efficacious than STX. Only high doses (100 nm) of selective ERß agonist diarylpropionitrile (DPN) and GPR30 agonist G-1 induced estradiol-like [Ca(2+)](i) responses. With the exception of DPN (even at 100 nm), all agonists stimulated progesterone synthesis. The PPT- and STX-induced [Ca(2+)](i) release and progesterone synthesis were blocked by LY 367385. While the G-1-stimulated [Ca(2+)](i) release was blocked by LY 367385, progesterone synthesis was not. Since GPR30 was detected intracellularly but not in the membrane, we interpreted these results to suggest that G-1 could activate mGluR1a on the membrane and GPR30 on the smooth endoplasmic reticulum to release intracellular calcium. Although STX and G-1 maximally stimulated [Ca(2+)](i) release in astrocytes from estrogen receptor-α knock-out (ERKO) mice, estradiol in vivo did not stimulate progesterone synthesis in the ERKO mice. Together, these results indicate that mERα is mainly responsible for the rapid, membrane-initiated estradiol-signaling that leads to progesterone synthesis in hypothalamic astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Receptor alfa de Estrogênio/fisiologia , Hipotálamo/metabolismo , Líquido Intracelular/metabolismo , Progesterona/biossíntese , Animais , Cálcio/fisiologia , Membrana Celular/fisiologia , Células Cultivadas , Estradiol/fisiologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Feminino , Hipotálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Long-Evans
10.
Neuroendocrinology ; 91(3): 211-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20332598

RESUMO

Astrocytes are the most abundant cells in the central nervous system (CNS). It appears that astrocytes are as diverse as neurons, having different phenotypes in various regions throughout the brain and participating in intercellular communication that involves signaling to neurons. It is not surprising then that astrocytes in the hypothalamus have an active role in the CNS regulation of reproduction. In addition to the traditional mechanism involving ensheathment of neurons and processes, astrocytes may have a critical role in regulating estrogen-positive feedback. Work in our laboratory has focused on the relationship between circulating estradiol and progesterone synthesized de novo in the brain. We have demonstrated that circulating estradiol stimulates the synthesis of progesterone in adult hypothalamic astrocytes, and this neuroprogesterone is critical for initiating the LH surge. Estradiol cell signaling is initiated at the cell membrane and involves the transactivation of metabotropic glutamate receptor type 1a (mGluR1a) leading to the release of intracellular stores of calcium. We used surface biotinylation to demonstrate that estrogen receptor-alpha (ERalpha) is present in the cell membrane and has an extracellular portion. Like other membrane receptors, ERalpha is inserted into the membrane and removed via internalization after agonist stimulation. This trafficking is directly regulated by estradiol, which rapidly and transiently increases the levels of membrane ERalpha, and upon activation, increases internalization that finally leads to ERalpha degradation. This autoregulation temporally limits membrane-initiated estradiol cell signaling. Thus, neuroprogesterone, the necessary signal for the LH surge, is released when circulating levels of estradiol peak on proestrus and activate progesterone receptors whose expression has been induced by the gradual rise of estradiol during follicular development.


Assuntos
Astrócitos/fisiologia , Estradiol/fisiologia , Receptor alfa de Estrogênio/metabolismo , Progesterona/fisiologia , Animais , Feminino , Humanos , Hipotálamo/fisiologia , Modelos Biológicos , Receptores de Glutamato Metabotrópico/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia
11.
J Neurosci ; 29(48): 15323-30, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19955385

RESUMO

Estradiol has rapid actions in the CNS that are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca(2+)](i)) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERalpha has an extracellular portion. In addition to the full-length ERalpha [apparent molecular weight (MW), 66 kDa], surface biotinylation labeled an ERalpha-immunoreactive protein (MW, approximately 52 kDa) identified by both COOH- and NH(2)-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 and 52 kDa ERalpha. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24-48 h reduced ERalpha levels, suggesting receptor downregulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERalpha-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERalpha trafficking to and from the membrane. Estradiol-induced [Ca(2+)](i) flux was also significantly increased at the time of peak ERalpha activation/internalization. These results demonstrate that ERalpha is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERalpha are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERalpha to augment and then terminate membrane-initiated signaling.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzoatos/farmacologia , Biotinilação/métodos , Cálcio/metabolismo , Células Cultivadas , Estradiol/análogos & derivados , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/deficiência , Antagonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/efeitos dos fármacos , Feminino , Fulvestranto , Glicina/análogos & derivados , Glicina/farmacologia , Hipotálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Ratos Long-Evans , Receptores de Glutamato Metabotrópico/metabolismo , Esteroides/metabolismo , Fatores de Tempo
12.
Endocrinology ; 150(3): 1369-76, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18948402

RESUMO

Estradiol, acting on a membrane-associated estrogen receptor-alpha (mERalpha), induces an increase in free cytoplasmic calcium concentration ([Ca(2+)](i)) needed for progesterone synthesis in hypothalamic astrocytes. To determine whether rapid estradiol signaling involves an interaction of mERalpha with metabotropic glutamate receptor type 1a (mGluR1a), changes in [Ca(2+)](i) were monitored with the calcium indicator, Fluo-4 AM, in primary cultures of female postpubertal hypothalamic astrocytes. 17beta-Estradiol over a range of 1 nm to 100 nm induced a maximal increase in [Ca(2+)](i) flux measured as a change in relative fluorescence [DeltaF Ca(2+) = 615 +/- 36 to 641 +/- 47 relative fluorescent units (RFU)], whereas 0.1 nm of estradiol stimulated a moderate [Ca(2+)](i) increase (275 +/- 16 RFU). The rapid estradiol-induced [Ca(2+)](i) flux was blocked with 1 microm of the estrogen receptor antagonist ICI 182,780 (635 +/- 24 vs. 102 +/- 11 RFU, P < 0.001) and 20 nmof the mGluR1a antagonist LY 367385 (617 +/- 35 vs. 133 +/- 20 RFU, P < 0.001). Whereas the mGluR1a receptor agonist (RS)-3,5-dihydroxyphenyl-glycine (50 microm) also stimulated a robust [Ca(2+)](i) flux (626 +/- 23 RFU), combined treatment of estradiol (1 nm) plus (RS)-3,5-dihydroxyphenyl-glycine (50 microm) augmented the [Ca(2+)](i) response (762 +/- 17 RFU) compared with either compound alone (P < 0.001). Coimmunoprecipitation demonstrated a direct physical interaction between mERalpha and mGluR1a in the plasma membrane of hypothalamic astrocytes. These results indicate that mERalpha acts through mGluR1a, and mGluR1a activation facilitates the estradiol response, suggesting that neural activity can modify estradiol-induced membrane signaling in astrocytes.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hipotálamo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Estradiol/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ligação Proteica , Ratos , Ratos Long-Evans , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA