Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 101(45): e31030, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36397441

RESUMO

BACKGROUND: Probiotics had been used to decreased bilirubin level in neonatal jaundice (NJ) without being further studied mechanism and stratification. The intestinal pathogen Escherichia coli produced ß-glucuronidase would increase enterohepatic circulation and elevate serum bilirubin levels (SBLs) which might worsen the disease process of NJ. STUDY OBJECTIVE: We hypothesized that some probiotics could decrease bilirubin level through inhibiting the growth of E. coli. It's assumed that adjuvant probiotic intervention might accelerate the phototherapy for NJ and alleviate the severity of the NJ. Besides, it's further study the efficacy of the probiotic intervention in NJ among the full-term and preterm newborns. MATERIALS AND METHODS: Firstly, the Bifidobacterium animalis subsp. lactis CP-9 was screened for its anti-E. coli activity. Then, it was orally administered to newborns with NJ in combination with conventional phototherapy (wavelength 425-457 nm) to determine its efficacy. 83 neonatal patients whose serum bilirubinemia was at a concentration of ≥ 15 mg/dL were participated the double-blind randomized trial and conducted in the neonatal ward of China Medical University Children's Hospital (CMUCH, Taichung, Taiwan). The test was conducted in 2 groups: experimental group: phototherapy + B. animalis subsp. lactis CP-9 (n = 43; 5 × 109 CFU/capsule) and control group: phototherapy + placebo (n = 40). The SBL and total phototherapy duration were measured. RESULTS: The experimental group showed improved serum bilirubin decline rate (-0.16 ±â€…0.02 mg/dL/h; P = .009, 95% CI -0.12 to -0.2), particularly in the first 24 hour of in-hospital care, and reduced total phototherapy duration (44.82 ±â€…3.23 h; P = .011, 95% CI: 51.3-38.2) compared with the control group. Especially, probiotics had a significant therapeutic effect (serum bilirubin decline rate: -0.18 ±â€…0.02 mg/dL/h, 95% CI -0.12 to -0.23, P = .014; phototherapy duration: 43.17 ±â€…22.72 h, 95% CI 51.9-34.3, P = .019) in the low-risk subgroup (full-term newborns). CONCLUSIONS: In conclusion, B. animalis subsp. lactis CP-9 synergistically improves treatment outcomes of NJ during in-hospital phototherapy including reduced total phototherapy duration and improved serum bilirubin decline rate, particularly in full-term newborns.


Assuntos
Bifidobacterium animalis , Icterícia Neonatal , Probióticos , Criança , Humanos , Recém-Nascido , Icterícia Neonatal/terapia , Probióticos/uso terapêutico , Resultado do Tratamento , Bilirrubina
2.
Nutrients ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35276886

RESUMO

Obesity is referred to as a condition in which excess body fat has accumulated to an extent that it causes negative impacts on health. The formation of body fat is regulated by complicated networks in relation to energy metabolism, and gut microbiota have been regarded as a key player. Studies have shown that supplements of probiotics provide benefits to health, including an improvement in metabolic syndrome and the control of body weight. In the present study, three probiotic strains, AP-32, bv-77, and CP-9, stood out from nine candidates using a lipid consumption assay, and were subsequently introduced to further animal tests. A rodent model of obesity was induced by a high-fat diet (HFD) in Sprague-Dawley (SD) rats, and three probiotic strains were administered either separately or in a mixture. A low dose (5 × 109 CFU/kg/day) and a high dose (2.5 × 1010 CFU/kg/day) of probiotics were orally provided to obese rats. The bioeffects of the probiotic supplements were evaluated based on five aspects: (1) the body weight and growth rate; (2) ketone bodies, non-esterified fatty acids (NEFAs), and feed efficiency; (3) blood biochemistry; (4) fat content; and (5) gut microbiota composition. Our results demonstrated that the supplement of AP-32, CP-9, and bv-77 alleviated the increasing rate of body weight and prevented the elevation of NEFAs and ketone bodies in obese rats. Although the effect on fat content showed a minor improvement, the supplement of probiotics displayed significant improvements in HFD-induced poor blood biochemical characteristics, such as alanine aminotransferase (ALT), aspartate Transaminase (AST), and uric acid, within 4 weeks. Furthermore, the combined supplement of three strains significantly increased Akkermansia mucinphila as compared with three individual strains, while its enrichment was negatively correlated with NEFAs and energy metabolism. In general, a mixture of three probiotic strains delivered a better outcome than a single strain, and the high dose of supplements provided a more profound benefit than the low dose. In conclusion, three probiotic strains, AP-32, bv-77, and CP-9, can alleviate body fat formation in obese rats. Furthermore, a combined supplement of these three probiotic strains may have potential in treating or controlling metabolic disorders.


Assuntos
Dieta Hiperlipídica , Probióticos , Akkermansia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley
3.
PeerJ ; 9: e11209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986988

RESUMO

BACKGROUND: Uric acid (UA) is the end product of purine metabolism in the liver and is excreted by the kidneys. When purine metabolism is impaired, the serum UA level will be elevated (hyperuricemia) and eventually lead to gout. During evolution, humans and some primates have lost the gene encoding uricase, which is vital in UA metabolism. With the advances of human society, the prevalence of hyperuricemia has dramatically increased because of the refined food culture. Hyperuricemia can be controlled by drugs, such as allopurinol and probenecid. However, these drugs have no preventive effect and are associated with unpleasant side effects. An increasing number of probiotic strains, which are able to regulate host metabolism and prevent chronic diseases without harmful side effects, have been characterized. The identification of probiotic strains, which are able to exert beneficial effects on UA metabolism, will provide an alternative healthcare strategy for patients with hyperuricemia, especially for those who are allergic to anti-hyperuricemia drugs. METHODS: To elicit hyperuricemia, rats in the symptom control group (HP) were injected with potassium oxonate and fed a high-purine diet. Rats in the probiotic groups received the high-purine diet, oxonate injection, and supplements of probiotic strains TSR332, TSF331, or La322. Rats in the blank control group (C) received a standard diet (AIN-93G) and oxonate injection. RESULTS: Purine-utilizing strains of probiotics were screened using high-pressure liquid chromatography (HPLC) in vitro, and the lowering effect on serum UA levels was analyzed in hyperuricemia rats in vivo. We found that Lactobacillus reuteri strain TSR332 and Lactobacillus fermentum strain TSF331 displayed significantly strong assimilation of inosine (90%; p = 0.00003 and 59%; p = 0.00545, respectively) and guanosine (78%; p = 0.00012 and 51%; p = 0.00062, respectively) within 30 min in vitro. Further animal studies revealed that serum UA levels were significantly reduced by 60% (p = 0.00169) and 30% (p = 0.00912), respectively, in hyperuricemic rats treated with TSR332 and TSF331 for 8 days. Remarkably, TSR332 ameliorated the occurrence of hyperuricemia, and no evident side effects were observed. Overall, our study indicates that TSR332 and TSF331 are potential functional probiotic strains for controlling the development of hyperuricemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA