Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569850

RESUMO

Molecular hydrogen (H2) has been recognized as a novel medical gas with antioxidant and anti-inflammatory effects. Non-alcoholic fatty liver disease (NAFLD) is a liver pathology with increased fat accumulation in liver tissue caused by factors other than alcohol consumption. Platelet mitochondrial function is considered to reflect systemic mitochondrial health. We studied the effect of adjuvant therapy with hydrogen-rich water (HRW) on coenzyme Q10 (CoQ10) content and platelet mitochondrial bioenergetics in patients with NAFLD. A total of 30 patients with NAFLD and 15 healthy volunteers were included in this clinical trial. A total of 17 patients (H2 group) drank water three × 330 mL/day with tablets producing HRW (>4 mg/L H2) for 8 weeks, and 13 patients (P group) drank water with placebo tablets producing CO2. The concentration of CoQ10-TOTAL was determined by the HPLC method, the parameter of oxidative stress, thiobarbituric acid reactive substances (TBARS), by the spectrophotometric method, and mitochondrial bioenergetics in platelets isolated from whole blood by high-resolution respirometry. The patients with NAFLD had lower concentrations of CoQ10-TOTAL in the blood, plasma, and platelets vs. the control group. Mitochondrial CI-linked LEAK respiration was higher, and CI-linked oxidative phosphorylation (OXPHOS) and CII-linked electron transfer (ET) capacities were lower vs. the control group. Plasma TBARS concentrations were higher in the H2 group. After 8 weeks of adjuvant therapy with HRW, the concentration of CoQ10 in platelets increased, plasma TBARS decreased, and the efficiency of OXPHOS improved, while in the P group, the changes were non-significant. Long-term supplementation with HRW could be a promising strategy for the acceleration of health recovery in patients with NAFLD. The application of H2 appears to be a new treatment strategy for targeted therapy of mitochondrial disorders. Additional and longer-term studies are needed to confirm and elucidate the exact mechanisms of the mitochondria-targeted effects of H2 therapy in patients with NAFLD.

2.
J Nutr Biochem ; 98: 108829, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358644

RESUMO

Previous work has shown that dietary flaxseed can significantly reduce cardiac damage from a coronary artery ligation-induced myocardial infarction. However, this model uses healthy animals and the ligation creates the infarct in an artificial manner. The purpose of this study was to determine if dietary flaxseed can protect the hearts of JCR:LA-cp rats, a model of genetic obesity and metabolic syndrome, from naturally occurring myocardial ischemic lesions. Male and female obese rats were randomized into four groups (n = 8 each) to receive, for 12 weeks, either a) control diet (Con), b) control diet supplemented with 10% ground flaxseed (CFlax), c) a high-fat, high sucrose (HFHS) diet, or d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. In male obese rats, serum total cholesterol and LDL-C were significantly lower in CFlax compared to Con.  Obese rats on HFHS exhibited increased myocardial ischemic lesions and diastolic dysfunction regardless of sex. HFlax significantly lowered the frequency of cardiac lesions and improved diastolic function in male and female obese rats compared to HFHS. Blood pressures were similar in obese and lean rats. No aortic atherosclerotic lesions were detectable in any group. Collectively, this study shows that a HFHS diet increased myocardial ischemic lesion frequency and abolished the protective effect of female sex on cardiac function. More importantly, the data demonstrates dietary flaxseed protected against the development of small spontaneous cardiac infarcts despite the ingestion of a HFHS diet and the presence of morbid obesity.


Assuntos
Colesterol/sangue , Linho , Isquemia Miocárdica/prevenção & controle , Obesidade Mórbida/dietoterapia , Animais , Aterosclerose/prevenção & controle , Pressão Sanguínea , Doenças Cardiovasculares/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Feminino , Coração/fisiopatologia , Masculino , Síndrome Metabólica/dietoterapia , Miocárdio/patologia , Ratos , Fatores Sexuais
3.
Biomolecules ; 10(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911872

RESUMO

MicroRNAs (miRNAs/miRs) such as miR-1, miR-133a, miR-133b, miR-135a, and miR-29b play a key role in many cardiac pathological remodeling processes, including apoptosis, fibrosis, and arrhythmias, after a myocardial infarction (MI). Dietary flaxseed has demonstrated a protective effect against an MI. The present study was carried out to test the hypothesis that dietary flaxseed supplementation before and after an MI regulates the expression of above-mentioned miRNAs to produce its cardioprotective effect. Animals were randomized after inducing MI by coronary artery ligation into: (a) sham MI with normal chow, (b) MI with normal chow, and (c-e) MI supplemented with either 10% milled flaxseed, or 4.4% flax oil enriched in alpha-linolenic acid (ALA), or 0.44% flax lignan secoisolariciresinol diglucoside. The feeding protocol consisted of 2 weeks before and 8 weeks after the surgery. Dietary flax oil supplementation selectively upregulated the cardiac expression of miR-133a, miR-135a, and miR-29b. The levels of collagen I expression were reduced in the flax oil group. We conclude that miR-133a, miR-135a, and miR-29b are sensitive to dietary flax oil, likely due to its rich ALA content. The cardioprotective effect of flaxseed in an MI could be due to modulation of these miRNAs.


Assuntos
Linho/química , MicroRNAs/biossíntese , MicroRNAs/genética , Infarto do Miocárdio/prevenção & controle , Ração Animal , Animais , Butileno Glicóis/farmacologia , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/análise , Ácidos Graxos/sangue , Glucosídeos/farmacologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/efeitos dos fármacos , Masculino , MicroRNAs/efeitos dos fármacos , Infarto do Miocárdio/etiologia , Ratos Sprague-Dawley , Sementes/química , Regulação para Cima , Ácido alfa-Linolênico/farmacologia
4.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999630

RESUMO

Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Dieta , Suplementos Nutricionais , MicroRNAs/metabolismo , Animais , Doenças Cardiovasculares/patologia , Modelos Animais de Doenças , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA