Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropharmacology ; 75: 324-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973313

RESUMO

NMDA receptors are ligand-gated ion channels that assemble into tetrameric receptor complexes composed of glycine-binding GluN1 and GluN3 subunits (GluN3A-B) and glutamate-binding GluN2 subunits (GluN2A-D). NMDA receptors can assemble as GluN1/N2 receptors and as GluN3-containing NMDA receptors, which are either glutamate/glycine-activated triheteromeric GluN1/N2/N3 receptors or glycine-activated diheteromeric GluN1/N3 receptors. The glycine-binding GluN1 and GluN3 subunits display strikingly different pharmacological selectivity profiles. However, the pharmacological characterization of GluN3-containing receptors has been hampered by the lack of methods and pharmacological tools to study GluN3 subunit pharmacology in isolation. Here, we have developed a method to study the pharmacology of GluN3 subunits in recombinant diheteromeric GluN1/N3 receptors by mutating the orthosteric ligand-binding pocket in GluN1. This method is suitable for performing compound screening and characterization of structure-activity relationship studies on GluN3 ligands. We have performed a virtual screen of the orthosteric binding site of GluN3A in the search for antagonists with selectivity for GluN3 subunits. In the subsequent pharmacological evaluation of 99 selected compounds, we identified 6-hydroxy-[1,2,5]oxadiazolo[3,4-b]pyrazin-5(4H)-one (TK80) a novel competitive antagonist with preference for the GluN3B subunit. Serendipitously, we also identified [2-hydroxy-5-((4-(pyridin-3-yl)thiazol-2-yl)amino]benzoic acid (TK13) and 4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carboxylic acid (TK30), two novel non-competitive GluN3 antagonists. These findings demonstrate that structural differences between the orthosteric binding site of GluN3 and GluN1 can be exploited to generate selective ligands.


Assuntos
Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Simulação por Computador , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Glicina/farmacologia , Concentração Inibidora 50 , Potenciais da Membrana/genética , Modelos Moleculares , Oócitos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Xenopus laevis
2.
J Pharmacol Exp Ther ; 333(3): 650-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20197375

RESUMO

N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.


Assuntos
Antagonistas dos Receptores Histamínicos H3/farmacologia , Imidazóis/farmacologia , Isotiurônio/análogos & derivados , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tioureia/análogos & derivados , Compostos de Anilina , Animais , Linhagem Celular , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Eletrofisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Corantes Fluorescentes , Humanos , Isotiurônio/farmacologia , Microscopia de Fluorescência , Oócitos/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Ensaio Radioligante , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Relação Estrutura-Atividade , Tioureia/farmacologia , Xantenos , Xenopus laevis
3.
Comb Chem High Throughput Screen ; 12(3): 241-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19275529

RESUMO

The neurotransmission mediated by gamma-aminobutyric acid (GABA) in the mammalian brain is terminated by a family of four GABA transporters (GATs). Inhibition of GATs is currently used in the treatment of epilepsy and these proteins are generally considered as important drug targets. In this study, we perform the first elaborate pharmacological characterization of all four human GAT subtypes. We conduct the experiments in parallel in a [3H]GABA uptake assay using 14 standard GAT substrates and inhibitors. This setup enables direct comparison of the absolute values of inhibitory activities of the compounds between the different GAT subtypes. The results are overall in agreement with data reported by other groups for the orthologous murine GATs. However, there do seem to be some minor variations among species. In contrast to the several subtype selective ligands identified for the GAT-1 subtype, no subtype selective ligands have been reported for the three remaining GATs. Given the potential therapeutic relevance of the individual GAT subtypes, a search for novel structures displaying selectivities for specific GAT subtypes is important. In this study, we validate our [3H]GABA uptake assay for use in high throughput screening. We find that the assay is categorized by high Z'-factors (Z' > 0.5) for all four GAT subtypes, demonstrating that the assay is excellent for a high throughput screen. This [3H]GABA uptake assay therefore enables future high throughput screening of compound libraries at the four human GATs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas da Membrana Plasmática de Transporte de GABA/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacocinética , Humanos , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA