Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Nutr ; 61(5): 2341-2356, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35107625

RESUMO

PURPOSE: Peony (Paeonia spp.) seed oil (PSO) contains a high amount of α-linolenic acid. The effects of PSO on hypercholesterolemia and gut microbiota remains unclear. The present study was to investigate effects of PSO supplementation on cholesterol metabolism and modulation of the gut microbiota. METHODS: Male Golden Syrian hamsters (n = 40) were randomly divided into five groups (n = 8, each) fed one of the following diets namely low-cholesterol diet (LCD); high cholesterol diet (HCD); HCD with PSO substituting 50% lard (LPSO), PSO substituting 100% lard (HPSO) and HCD with addition of 0.5% cholestyramine (PCD), respectively, for 6 weeks. RESULTS: PSO supplementation dose-dependently reduced plasma total cholesterol (TC) by 9-14%, non-high-density lipoprotein cholesterol (non-HDL-C) by 7-18% and triacylglycerols (TG) by 14-34% (p < 0.05). In addition, feeding PSO diets reduced the formation of plaque lesions by 49-61% and hepatic lipids by 9-19% compared with feeding HCD diet (p < 0.01). PSO also altered relative genus abundance of unclassified_f__Coriobacteriaceae, unclassified_f__Erysipelotrichaceae, Peptococcus, unclassified_f__Ruminococcaceae, norank_o__Mollicutes_RF9 and Christensenellaceae_R-7_group. CONCLUSIONS: It was concluded that PSO was effective in reducing plasma cholesterol and hepatic lipids and favorably modulating gut microbiota associated with cholesterol metabolism.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Paeonia , Animais , Cricetinae , Masculino , Colesterol , Mesocricetus , Paeonia/metabolismo , Óleos de Plantas/metabolismo , Óleos de Plantas/farmacologia
2.
Eur J Nutr ; 60(5): 2735-2746, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33392758

RESUMO

PURPOSE: Blueberry and cranberry are rich in anthocyanins. The present study was to investigate the effects of anthocyanin extracts from blueberry and cranberry on body weight and gut microbiota. METHODS: C57BL/6 J Mice were divided into six groups (n = 9 each) fed one of six diets namely low-fat diet (LFD), high-fat diet (HFD), HFD with the addition of 1% blueberry extract (BL), 2% blueberry extract (BH), 1% cranberry extract (CL), and 2% cranberry extract (CH), respectively. RESULTS: Feeding BL and BH diets significantly decreased body weight gain by 20-23%, total adipose tissue weight by 18-20%, and total liver lipids by 16-18% compared with feeding HFD. Feeding CH diet but not CL diet reduced the body weight by 27%, accompanied by a significant reduction of total plasma cholesterol by 25% and tumor necrosis factor alpha (TNF-α) by 38%. The metagenomic analysis showed that the supplementation of blueberry and cranberry anthocyanin extracts reduced plasma lipopolysaccharide concentration, accompanied by a reduction in the relative abundance of Rikenella and Rikenellaceae. Dietary supplementation of berry anthocyanin extracts promoted the growth of Lachnoclostridium, Roseburia, and Clostridium_innocuum_group in genus level, leading to a greater production of fecal short-chain fatty acids (SCFA). CONCLUSIONS: It was concluded that both berry anthocyanins could manage the body weight and favorably modulate the gut microbiota at least in mice.


Assuntos
Mirtilos Azuis (Planta) , Microbioma Gastrointestinal , Vaccinium macrocarpon , Animais , Antocianinas , Dieta Hiperlipídica/efeitos adversos , Frutas , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia
3.
Food Funct ; 11(7): 6091-6103, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568327

RESUMO

Ursolic acid (UA) is a triterpenoid acid widely abundant in fruits and vegetables such as apple, blueberry and cranberry. The present study was carried out to investigate the effect of UA supplementation in diet on blood cholesterol, intestinal cholesterol absorption and gut microbiota in hypercholesterolemic hamsters. A total of thirty-two hamsters were randomly assigned to four groups and given a non-cholesterol diet (NCD), a high-cholesterol diet containing 0.1% cholesterol (HCD), an HCD diet containing 0.2% UA (UAL), or an HCD diet containing 0.4% UA (UAH) for 6 weeks. Results showed that UA supplementation reduced plasma cholesterol by 15-16% and inhibited intestinal cholesterol absorption by 2.6-9.2%. The in vitro micellar cholesterol solubility experiment clearly demonstrated that UA could displace 40% cholesterol from micelles. In addition, UA decreased the ratio of Firmicutes to Bacteroidetes, whereas it enhanced the growth of short chain fatty acid (SCFA)-producing bacteria in the intestine. In conclusion, UA possessed a cholesterol-lowering activity and could favorably modulate the gut microbiota.


Assuntos
Bactérias/efeitos dos fármacos , Colesterol na Dieta/metabolismo , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Hipercolesterolemia/tratamento farmacológico , Absorção Intestinal/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Bacteroidetes/efeitos dos fármacos , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/sangue , Cricetinae , Dieta , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Firmicutes/efeitos dos fármacos , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Masculino , Mesocricetus , Micelas , Distribuição Aleatória , Solubilidade , Triterpenos/uso terapêutico , Ácido Ursólico
4.
J Agric Food Chem ; 68(7): 2071-2081, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31984735

RESUMO

Wild melon (Cucumis melo var. agrestis) seed oil (CO) contains 71.3% polyunsaturated fatty acids. The present study investigated the effects of CO on blood cholesterol and gut microbiota. Hamsters (n = 32) were randomly divided into four groups and given one of four diets, namely noncholesterol diet (NCD), high-cholesterol diet containing 0.1% cholesterol (HCD), HCD containing 4.75% CO (COL), and HCD containing 9.5% CO (COH) for 6 weeks. CO supplementation at 9.5% in the diet reduced plasma cholesterol by 24% and enhanced the excretion of fecal bile acids by 150%. CO supplementation upregulated the gene expression of hepatic cholesterol 7α-hydroxylase (CYP7A1). In addition, supplementation of CO in the diet remarkably increased the production of fecal short-chain fatty acids and favorably altered the relative abundances of Eubacteriaceae, Clostridiales_vadinBB60_group, Ruminococcaceae, Streptococcaceae, and Desulfovibrionaceae at a family level. It was concluded that CO could reduce plasma cholesterol via promoting the excretion of fecal acidic sterols and modulating gut microbiota.


Assuntos
Colesterol/sangue , Microbioma Gastrointestinal , Hipercolesterolemia/dietoterapia , Óleos de Plantas/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Cucumis melo/química , Cucumis melo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Humanos , Hipercolesterolemia/metabolismo , Hipercolesterolemia/microbiologia , Masculino , Mesocricetus , Óleos de Plantas/química , Sementes/química
5.
J Agric Food Chem ; 67(49): 13635-13647, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31736303

RESUMO

Trimethylamine-N-oxide (TMAO) is a risk factor for atherosclerosis. We compared the potency of fish oil with flaxseed oil in reducing TMAO-exacerbated atherogenesis. Five groups of ApoE-/- mice were given one of five diets, namely, a low-fat diet, a Western high fat diet (WD), a WD plus 0.2% TMAO, and two WDs containing 0.2% TMAO with 50% lard being replaced by flaxseed oil or fish oil. TMAO accelerated atherosclerosis and disturbed cholesterol homeostasis. Compared with flaxseed oil, fish oil was more effective in inhibiting TMAO-induced atherogenesis by lowering plasma cholesterol and inflammatory cytokines. Both oils could reverse TMAO-induced decrease in fecal acidic sterols. Fish oil promoted fecal output of neutral sterols and downregulated hepatic cholesterol biosynthesis. Fish oil was more effective than flaxseed oil in promoting the growth of short-chain fatty acid-producing bacteria and lowering microbial generation of lipopolysaccharide. In conclusion, fish oil is more potent than flaxseed oil to ameliorate TMAO-exacerbated atherogenesis.


Assuntos
Aterosclerose/dietoterapia , Aterosclerose/microbiologia , Óleos de Peixe/metabolismo , Microbioma Gastrointestinal , Óleo de Semente do Linho/metabolismo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Masculino , Metilaminas/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL
6.
Nutrients ; 11(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731675

RESUMO

Soybean germ phytosterols (SGP) largely exist in soybean germ oil. Our previous study demonstrated that soybean germ oil was effective in reducing plasma cholesterol. However, it remains unknown if its phytosterols are the active ingredients responsible for the plasma cholesterol-lowering activity. The present study aimed to test the effect of SGP on plasma cholesterol and to investigate its associated underlying mechanisms using hamsters as animal model. Male hamsters (n = 40) were randomly divided into five groups (n = 8/group) and fed one of the five diets: a non-cholesterol diet (NCD), a high cholesterol diet (HCD), a HCD diet containing 0.5% cholestyramine (PC), and two HCD diets containing 0.1% (LP) and 0.2% (HP) SGP, respectively, for six weeks. Results showed that SPG reduced plasma cholesterol level in a dose-dependent manner, whereas it dose-dependently increased the excretion of both fecal neutral and acidic sterols. SGP was also effective in displacing cholesterol from micelles. It was concluded that SGP possessed hypocholesterolemic activity, likely by inhibiting cholesterol absorption in the intestine and promoting fecal sterol excretion.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol na Dieta/farmacologia , Colesterol/sangue , Dieta/efeitos adversos , Fitosteróis/farmacologia , Óleo de Soja/química , Animais , Cricetinae , Dieta/métodos , Fezes/química , Intestinos/efeitos dos fármacos , Masculino , Esteróis/análise
7.
Food Funct ; 10(9): 5669-5681, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433440

RESUMO

Sea buckthorn seed oil (SBSO) has been used as a functional food in the prevention of heart diseases. The present study investigates the effects of SBSO on blood cholesterol and the gut microbiota in hypercholesterolemia hamsters. Four groups of hamsters (n = 8 each) were given one of four diets, namely a non-cholesterol control diet (NCD), a high-cholesterol control diet (HCD) containing 0.1% cholesterol, and an HCD diet with sea buckthorn seed oil replacing 50% lard (SL) or replacing 100% lard (SH). Feeding SL and SH diets could reduce blood total cholesterol by 20-22%. This was accompanied by the down-regulation of the gene expression of acyl-CoA:cholesterol acyltransferase 2 (ACAT2), microsomal triacylglycerol transport protein (MTP), and ATP-binding cassette transporter8 (ABCG8). SBSO supplementation also increased the production of intestinal short-chain fatty acids and fecal outputs of neutral sterols. Metagenomic analysis demonstrated that feeding SL and SH diets could favorably modulate the relative abundance of Bacteroidales_S24-7_group, Ruminococcaceae, and Eubacteriaceae. It was therefore concluded that SBSO was effective in reducing blood cholesterol in hypercholesterolemic hamsters via increasing intestinal cholesterol excretion and promoting the growth of SCFA-producing bacteria.


Assuntos
Microbioma Gastrointestinal , Hippophae/química , Hipercolesterolemia/microbiologia , Óleos de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anticolesterolemiantes/química , Anticolesterolemiantes/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Colesterol/sangue , Cricetinae , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Hippophae/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Masculino , Mesocricetus , Fitosteróis/química , Fitosteróis/metabolismo , Óleos de Plantas/química , Sementes/química , Sementes/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Triglicerídeos/sangue
8.
Food Funct ; 10(5): 2847-2860, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31062778

RESUMO

Accumulative evidence has suggested that tea consumption has benefits in reducing body fat and alleviating metabolic syndrome. We hypothesize that benefits of tea consumption can be partially mediated by modulating intestinal microbiota via inhibiting the formation of lipopolysaccharides (LPS) and promoting the production of short chain fatty acids (SCFAs). C57BL/6J mice were fed a high fat diet with the addition of 1% water extracts of green tea, oolong tea and black tea. Results showed that the dietary supplementation of three tea water extracts equally improved the glucose tolerance and reduced a high fat diet-induced gain in weight, hepatic lipids, and white adipose tissue weights. This was accompanied by a significant reduction in plasma LPS and a significant increase in the production of SCFAs. The metagenomic analyses showed that the tea extracts changed the overall composition of gut microbiota and decreased the relative abundance of family Rikenellaceae and Desulfovibrionaceae. In addition, tea water extracts could also change the abundance of key operational taxonomic units (OTUs) including OTU473 (Alistipes), OTU229 (Rikenella), OTU179 (Ruminiclostridium) and OTU264 (Acetatifactor). In conclusion, three tea extracts could improve the glucose tolerance, induce the production of SCFAs and inhibit the production of endotoxin LPS, most likely mediated by modulating gut microbiota.


Assuntos
Camellia sinensis/metabolismo , Microbioma Gastrointestinal , Obesidade/dietoterapia , Chá/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Peso Corporal , Camellia sinensis/química , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Obesidade/fisiopatologia
9.
Food Funct ; 10(4): 1836-1845, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30920571

RESUMO

Health benefits of soybean germ oil have not yet been fully explored. The present study examined the blood cholesterol-lowering activity of soybean germ oil and the underlying mechanisms in hypercholesterolemic hamsters. Forty hamsters were randomly assigned into five groups and fed a non-cholesterol diet, a high cholesterol diet and one of three high cholesterol diets containing 0.50% cholestyramine, 4.75% soybean germ oil, and 9.50% soybean germ oil, respectively, for 6 weeks. The result showed that soybean germ oil significantly decreased plasma cholesterol by 18.5-31.5%, which was accompanied by 28.3-62.7% increase in excretion of fecal neutral sterols and bile acids. The effect was mediated by down-regulation of intestinal Niemann-Pick C1-like 1 protein (NPC1L1) and up-regulation of liver cholesterol-7α-hydroxylase (CYP7A1). We concluded that soybean germ oil favorably modulated the blood cholesterol concentration by inhibiting cholesterol absorption through inhibiting gene expression of NPC1L1 and by enhancing bile acid excretion via promoting gene expression of CYP7A1.


Assuntos
Anticolesterolemiantes/metabolismo , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/dietoterapia , Fitosteróis/metabolismo , Óleo de Soja/metabolismo , Animais , Colesterol/sangue , Colesterol 7-alfa-Hidroxilase/metabolismo , Cricetinae , Humanos , Hipercolesterolemia/metabolismo , Mucosa Intestinal/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA