Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612399

RESUMO

Osteosarcoma, which has poor prognosis after metastasis, is the most common type of bone cancer in children and adolescents. Therefore, plant-derived bioactive compounds are being actively developed for cancer therapy. Artemisia apiacea Hance ex Walp. is a traditional medicinal plant native to Eastern Asia, including China, Japan, and Korea. Vitexicarpin (Vitex), derived from A. apiacea, has demonstrated analgesic, anti-inflammatory, antitumour, and immunoregulatory properties; however, there are no published studies on Vitex isolated from the aerial parts of A. apiacea. Thus, this study aimed to evaluate the antitumour activity of Vitex against human osteosarcoma cells. In the present study, Vitex (>99% purity) isolated from A. apiacea induced significant cell death in human osteosarcoma MG63 cells in a dose- and time-dependent manner; cell death was mediated by apoptosis, as evidenced by the appearance of cleaved-PARP, cleaved-caspase 3, anti-apoptotic proteins (Survivin and Bcl-2), pro-apoptotic proteins (Bax), and cell cycle-related proteins (Cyclin D1, Cdk4, and Cdk6). Additionally, a human phosphokinase array proteome profiler revealed that Vitex suppressed AKT-dependent downstream kinases. Further, Vitex reduced the phosphorylation of PRAS40, which is associated with autophagy and metastasis, induced autophagosome formation, and suppressed programmed cell death and necroptosis. Furthermore, Vitex induced antimetastatic activity by suppressing the migration and invasion of MMP13, which is the primary protease that degrades type I collagen for tumour-induced osteolysis in bone tissues and preferential metastasis sites. Taken together, our results suggest that Vitex is an attractive target for treating human osteosarcoma.


Assuntos
Neoplasias Ósseas , Flavonoides , Osteossarcoma , Humanos , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt
2.
J Lipid Atheroscler ; 11(3): 272-279, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36212750

RESUMO

Objective: The endothelial inflammatory response plays an important role in atherogenesis by inducing nuclear factor (NF)κB-dependent cell adhesion molecule expression and monocyte recruitment. Here, we screened for natural ligands and investigated the ability of shinjulactone A to inhibit interleukin-1ß (IL-1ß)-induced endothelial inflammatory signaling. Methods: The natural compound library included 880 single compounds isolated from medicinal plants by the Korean Medicinal Material Bank. Primary endothelial cells were pretreated with single compounds before stimulation with IL-1ß to induce endothelial inflammation. Endothelial inflammation was measured by assaying NFκB activation and monocyte adhesion. The endothelial-mesenchymal transition (EndMT) was evaluated using cell type-specific marker protein expression and morphology. Results: Shinjulactone A was identified as an efficient blocker of IL-1ß -induced NFκB activation, with a half-maximal inhibitory concentration of approximately 1 µM, and monocyte recruitment in endothelial cells. However, it did not affect lipopolysaccharide-induced NFκB activation in macrophages. Compared to Bay 11-782, a well-known NFκB inhibitor that shows considerable cytotoxicity during long-term treatment, shinjulactone A did not affect endothelial cell viability. Furthermore, it also significantly inhibited the EndMT, which is known to promote atherosclerosis and plaque instability. Conclusion: We suggest that shinjulactone A may be an effective and safe drug candidate for atherosclerosis because it targets and inhibits both endothelial inflammation and the EndMT, without impairing NFκB-dependent innate immunity in macrophages.

3.
Arch Pharm Res ; 41(5): 513-518, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725985

RESUMO

Two new ß-carboline alkaloids, 1-acetyl-4-methoxy-8-hydroxy-ß-carboline (1) and 1-acetyl-4,8-dimethoxy-ß-carboline (2), together with 10 known compounds; seven ß-carboline alkaloids (3-9), two canthin-6-one alkaloids (10 and 11), and one quassinoid (12) were isolated from the stems of Picrasma quassioides. The structure of the new compounds 1 and 2 were determined by spectroscopic analyses including 1D- and 2D-NMR and HRMS interpretation. All the isolates (1-12) were evaluated for their cytotoxicity against human ovarian carcinoma A2780 and SKOV3 cell lines using MTT assays. Of the isolates, compounds 5-7 exhibited the most potent cytotoxicity on both A2780 and SKOV3 cell lines in vitro.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Carbolinas/farmacologia , Picrasma/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Alcaloides/química , Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Carbolinas/química , Carbolinas/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Biochem Biophys Res Commun ; 497(1): 347-353, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29432735

RESUMO

As a powerful antioxidant, vitamin C protects cells from oxidative damage by inhibiting production of free radicals. However, high levels of vitamin C shows cytotoxicity especially on cancerous cells through generating excessive ROS and blocking the energy homeostasis. Although the double-sided character of vitamin C has been extensively studied in many cell types, there is little research on the consequence of vitamin C treatment in stem cells. Here, we identified that high-dose vitamin C shows cellular toxicity on proliferating NSPCs. We also demonstrated that undifferentiated NSPCs are more sensitive to vitamin C-driven DNA damage than differentiated cells, due to higher expression of Glut genes. Finally, we showed that high-dose vitamin C selectively induces DNA damage on cancer stem cells rather than differentiated tumor cells, raising a possibility that vitamin C may be used to target cancer stem cells.


Assuntos
Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/efeitos adversos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/efeitos adversos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/patologia
5.
Mol Pharmacol ; 83(2): 367-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23150487

RESUMO

Targeting specific molecules is a promising cancer treatment because certain types of cancer cells are dependent on specific oncogenes. This strategy led to the development of therapeutics that use monoclonal antibodies or small-molecule inhibitors. However, the continued development of novel molecular targeting inhibitors is required to target the various oncogenes associated with the diverse types and stages of cancer. Obtusilactone B is a butanolide derivative purified from Machilus thunbergii. In this study, we show that obtusilactone B functions as a small-molecule inhibitor that causes abnormal nuclear envelope dynamics and inhibits growth by suppressing vaccinia-related kinase 1 (VRK1)-mediated phosphorylation of barrier-to-autointegration factor (BAF). BAF is important in maintaining lamin integrity, which is closely associated with diseases that include cancer. Specific binding of obtusilactone B to BAF suppressed VRK1-mediated BAF phosphorylation and the subsequent dissociation of the nuclear envelope from DNA that allows cells to progress through the cell cycle. Obtusilactone B potently induced tumor cell death in vitro, indicating that specific targeting of BAF to block cell cycle progression can be an effective anticancer strategy. Our results demonstrate that targeting a major constituent of the nuclear envelope may be a novel and promising alternative approach to cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/tratamento farmacológico , Membrana Nuclear/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Extratos Vegetais/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Antineoplásicos Fitogênicos/química , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Caules de Planta/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
6.
Food Chem ; 135(3): 1397-403, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22953872

RESUMO

Five phenolic compounds were isolated from the seeds of Perilla (Perilla frutescens L.) using gradient solvent fractionation, silica gel column chromatography, and preparative high-performance liquid chromatography (HPLC). Their chemical structures were identified as caffeic acid-3-O-glucoside (1), rosmarinic acid-3-O-glucoside (2), rosmarinic acid (3), luteolin (4), and apigenin (5) using NMR spectroscopy and HPLC-ESI/MS analysis. Among them, luteolin (4) inhibited α-glucosidase (EC 3.2.1.20) with IC(50) value of 45.4µM. The inhibition kinetic analysed by Dixon plot indicate that luteolin is a noncompetitive inhibitor, and the inhibition constant K(I) was calculated at 45.0µM. Moreover, rosmarinic acid (3) and luteolin (4) inhibited recombinant human aldose reductase (EC 1.1.1.21) with IC(50) values of 11.2 and 0.6µM, respectively. Notably, the inhibition kinetic of luteolin (4) follows a hyperbolic dependence on aldose reductase inhibition by Dixon plot. Thus, inhibition kinetic indicates that luteolin (4) is a mixed-type inhibitor.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores de Glicosídeo Hidrolases , Perilla frutescens/química , Fenóis/química , Extratos Vegetais/química , Aldeído Redutase/análise , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sementes/química , alfa-Glucosidases/análise
7.
Bioorg Med Chem Lett ; 18(1): 194-8, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17998162

RESUMO

Six diarylbutane lignans 1-5 and one aryltetralin lignan 6 were isolated from the methanol (95%) extracts of Myristica fragrans seeds and then 7-methyl ether diarylbutane lignan 4 has proven to be new a compound. Their compounds 1-7 were evaluated for LDL-antioxidant activity to identify the most potent LDL-antioxidant 3 with an IC50 value of 2.6 microM in TBARS assay. Due to its potency, compound 3 was tested for complementary in vitro investigations, such as lag time (140 min at 1.0 microM), relative electrophoretic mobility (REM) of ox-LDL (inhibition of 80% at 20 microM and 72% at 10 microM), and fragmentation of apoB-100 (inhibition of 93% at 20 microM) on copper-mediated LDL oxidation. In macrophage-mediated LDL oxidation, the TBARS formation was also inhibited by compound 3.


Assuntos
Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Lignanas/isolamento & purificação , Lignanas/farmacologia , Lipoproteínas LDL/química , Myristica/química , Antioxidantes/química , Apolipoproteína B-100/química , Apolipoproteína B-100/metabolismo , Linhagem Celular Tumoral , Cobre/química , Eletroforese em Gel de Ágar , Humanos , Lignanas/química , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sementes/química , Substâncias Reativas com Ácido Tiobarbitúrico/química , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA