Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncol Lett ; 16(1): 612-618, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928447

RESUMO

Liquid biopsy using circulating tumor cells (CTCs) is a noninvasive and repeatable procedure, and is therefore useful for molecular assays. However, the rarity of CTCs remains a challenge. To overcome this issue, our group developed a novel technology for the isolation of CTCs on the basis of cell size difference. The present study isolated CTCs from patients with breast cancer using this method, and then used these cells for cancer gene panel analysis. Blood samples from eight patients with breast cancer were collected, and CTCs were enriched using size-based filtration. Enriched CTCs were counted using immunofluorescent staining with an epithelial cell adhesion molecule (EpCAM) and CD45 antibodies. CTC genomic DNA was extracted, amplified, and screened for mutations in 400 genes using the Ion AmpliSeq Comprehensive Cancer Panel. White blood cells (WBCs) from the same patient served as a negative control, and mutations in CTCs and WBCs were compared. EpCAM+ cells were detected in seven out of eight patients, and the average number of EpCAM+ cells was 8.6. The average amount of amplified DNA was 32.7 µg, and the percentage of reads mapped to any targeted region relative to all reads mapped to the reference was 98.6%. The detection rate of CTC-specific mutations was 62.5%. The CTC-specific mutations were enhancer of zeste polycomb repressive complex 2 subunit, notch 1, AT-rich interaction domain 1A, serine/threonine kinase 11, fms related tyrosine kinase 3, MYCN proto-oncogene, bHLH transcription factor, APC, WNT signaling pathway regulator, and phosphatase and tensin homolog. The technique used by the present study was demonstrated to be effective at isolating CTCs at a sufficiently high purity for genomic analysis, and supported the use of comprehensive cancer panel analysis as a potential application for precision medicine.

2.
Oncotarget ; 7(9): 10547-56, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26859683

RESUMO

BACKGROUND: Given the modest responses to everolimus, a mTOR inhibitor, in multiple tumor types, there is a pressing need to identify predictive biomarkers for this drug. Using targeted ultra-deep sequencing, we aimed to explore genomic alterations that confer extreme sensitivity to everolimus. RESULTS: We collected formalin-fixed paraffin-embedded tumor/normal pairs from 39 patients (22 with exceptional clinical benefit, 17 with no clinical benefit) who were treated with everolimus across various tumor types (13 gastric cancers, 15 renal cell carcinomas, 2 thyroid cancers, 2 head and neck cancer, and 7 sarcomas). Ion AmpliSeqTM Comprehensive Cancer Panel was used to identify alterations across all exons of 409 target genes. Tumors were sequenced to a median coverage of 552x. Cancer genomes are characterized by 219 somatic single-nucleotide variants (181 missense, 9 nonsense, 7 splice-site) and 22 frameshift insertions/deletions, with a median of 2.1 mutations per Mb (0 to 12.4 mutations per Mb). Overall, genomic alterations with activating effect on mTOR signaling were identified in 10 of 22 (45%) patients with clinical benefit and these include MTOR, TSC1, TSC2, NF1, PIK3CA and PIK3CG mutations. Recurrently mutated genes in chromatin remodeling genes (BAP1; n = 2, 12%) and receptor tyrosine kinase signaling (FGFR4; n = 2, 12%) were noted only in patients without clinical benefit. CONCLUSIONS: Regardless of different cancer types, mTOR-pathway-activating mutations confer sensitivity to everolimus. Targeted sequencing of mTOR pathway genes facilitates identification of potential candidates for mTOR inhibitors.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Everolimo/uso terapêutico , Aparelho Lacrimal/patologia , Neurofibromina 1/genética , Serina-Treonina Quinases TOR/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Renais/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Polimorfismo de Nucleotídeo Único/genética , Sarcoma/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias da Glândula Tireoide/tratamento farmacológico , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA