Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Ecol ; 86(1): 431-445, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35867140

RESUMO

The interaction of plants with bacteria and the long-term success of their adaptation to challenging environments depend upon critical traits that include nutrient solubilization, remodeling of root architecture, and modulation of host hormonal status. To examine whether bacterial promotion of phosphate solubilization, root branching and the host auxin response may account for plant growth, we isolated and characterized ten bacterial strains based on their high capability to solubilize calcium phosphate. All strains could be grouped into six Pseudomonas species, namely P. brassicae, P. baetica, P. laurylsulfatiphila, P. chlororaphis, P. lurida, and P. extremorientalis via 16S rRNA molecular analyses. A Solibacillus isronensis strain was also identified, which remained neutral when interacting with Arabidopsis roots, and thus could be used as inoculation control. The interaction of Arabidopsis seedlings with bacterial streaks from pure cultures in vitro indicated that their phytostimulation properties largely differ, since P. brassicae and P. laurylsulfatiphila strongly increased shoot and root biomass, whereas the other species did not. Most bacterial isolates, except P. chlororaphis promoted lateral root formation, and P. lurida and P. chlororaphis strongly enhanced expression of the auxin-inducible gene construct DR5:GUS in roots, but the most bioactive probiotic bacterium P. brassicae could not enhance the auxin response. Inoculation with P. brassicae and P. lurida improved shoot and root growth in medium supplemented with calcium phosphate as the sole Pi source. Collectively, our data indicate the differential responses of Arabidopsis seedlings to inoculation with several Pseudomonas species and highlight the potential of P. brassicae to manage phosphate nutrition and plant growth in a more eco-friendly manner.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pseudomonas/genética , Plântula , Fosfatos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Raízes de Plantas/microbiologia , Ácidos Indolacéticos/metabolismo , Bactérias/genética
2.
Plant Mol Biol ; 108(1-2): 77-91, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34855067

RESUMO

KEY MESSAGE: The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiência , Reguladores de Crescimento de Plantas/fisiologia , Coifa/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/fisiologia , Coifa/citologia , Coifa/metabolismo , Transdução de Sinais
3.
Planta ; 250(4): 1177-1189, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31190117

RESUMO

MAIN CONCLUSION: A MAPK module, of which MPK6 kinase is an important component, is involved in the coordination of the responses to Pi and Fe in the primary root meristem of Arabidopsis thaliana. Phosphate (Pi) deficiency induces determinate primary root growth in Arabidopsis through cessation of cell division in the meristem, which is linked to an increased iron (Fe) accumulation. Here, we show that Mitogen-Activated Protein Kinase6 (MPK6) has a role in Arabidopsis primary root growth under low Pi stress. MPK6 activity is induced in roots in response to low Pi, and such induction is enhanced by Fe supplementation, suggesting an MPK6 role in coordinating Pi/Fe balance in mediating root growth. The differentiation of the root meristem induced by low Pi levels correlates with altered expression of auxin-inducible genes and auxin transporter levels via MPK6. Our results indicate a critical role of the MPK6 kinase in coordinating meristem cell activity to Pi and Fe availability for proper primary root growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ferro/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Divisão Celular , Genes Reporter , Ácidos Indolacéticos/metabolismo , Meristema/enzimologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Reguladores de Crescimento de Plantas , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA