Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Image Anal ; 57: 1-17, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254729

RESUMO

This paper presents a method for automatic breast pectoral muscle segmentation in mediolateral oblique mammograms using a Convolutional Neural Network (CNN) inspired by the Holistically-nested Edge Detection (HED) network. Most of the existing methods in the literature are based on hand-crafted models such as straight-line, curve-based techniques or a combination of both. Unfortunately, such models are insufficient when dealing with complex shape variations of the pectoral muscle boundary and when the boundary is unclear due to overlapping breast tissue. To compensate for these issues, we propose a neural network framework that incorporates multi-scale and multi-level learning, capable of learning complex hierarchical features to resolve spatial ambiguity in estimating the pectoral muscle boundary. For this purpose, we modified the HED network architecture to specifically find 'contour-like' objects in mammograms. The proposed framework produced a probability map that can be used to estimate the initial pectoral muscle boundary. Subsequently, we process these maps by extracting morphological properties to find the actual pectoral muscle boundary. Finally, we developed two different post-processing steps to find the actual pectoral muscle boundary. Quantitative evaluation results show that the proposed method is comparable with alternative state-of-the-art methods producing on average values of 94.8 ±â€¯8.5% and 97.5 ±â€¯6.3% for the Jaccard and Dice similarity metrics, respectively, across four different databases.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Diagnóstico por Computador/métodos , Redes Neurais de Computação , Músculos Peitorais/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pontos de Referência Anatômicos , Feminino , Humanos , Mamografia
2.
Med Image Anal ; 46: 202-214, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29609054

RESUMO

Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Trombose/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Artefatos , Meios de Contraste , Humanos , Trombose/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA