Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 233: 119805, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868119

RESUMO

Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.


Assuntos
Compostos de Amônio , Água Subterrânea , Purificação da Água , Manganês/química , Ferro , Compostos de Amônio/química , Amônia , Quartzo , Ecossistema , Água Subterrânea/química , Filtração/métodos , Purificação da Água/métodos
2.
Front Microbiol ; 11: 1522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849321

RESUMO

Nitrification is a key process for N-removal in engineered and natural environments, but recent findings of novel nitrifying microorganisms with surprising features revealed that our knowledge of this functional guild is still incomplete. Especially nitrite oxidation - the second step of nitrification - is catalyzed by a phylogenetically diverse bacterial group, and only recently bacteria of the phylum Chloroflexi have been identified as thermophilic nitrite-oxidizing bacteria (NOB). Among these, Nitrolancea hollandica was isolated from a laboratory-scale nitrifying bioreactor operated at 35°C with a high load of ammonium bicarbonate. However, its distribution remains cryptic as very few closely related environmental 16S rRNA gene sequences have been retrieved so far. In this study, we demonstrate how such thermophilic NOB can be enriched using modified mineral media inoculated with samples from a wastewater side-stream reactor operated at 39.5°C. Distinct cultivation conditions resulted in quick and reproducible high enrichment of two different strains of Nitrolancea, closely related to Nl. hollandica. The same cultivation approach was applied to a complex nitrite-oxidizing pre-enrichment at 42°C inoculated with biomass from a geothermal spring in the Copahue volcano area in Neuquen, Argentina. Here, an additional distinct representative of the genus Nitrolancea was obtained. This novel species had 16S rRNA and nitrite oxidoreductase alpha subunit (nxrA) gene sequence identities to Nl. hollandica of 98.5% and 97.2%, respectively. A genomic average nucleotide identity between the Argentinian strain and Nl. hollandica of 91.9% indicates that it indeed represents a distinct species. All Nitrolancea cultures formed lancet-shaped cells identical to Nl. hollandica and revealed similar physiological features, including the capability to grow at high nitrite concentrations. Growth was optimal at temperatures of 35-37°C and was strongly enhanced by ammonium supplementation. Genomic comparisons revealed that the four Nitrolancea strains share 2399 out of 3387 orthologous gene clusters and encode similar key functions. Our results define general growth conditions that enable the selective enrichment of Nitrolancea from artificial and natural environments. In most natural habitats these NOB apparently are of low abundance and their proliferation depends on the balanced presence of nitrite and ammonium, with an optimal incubation temperature of 37°C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA