Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 308: 119596, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716890

RESUMO

The aim of this study was to recover Sc as the main product and Fe as a by-product from Hungarian bauxite residue/red mud (RM) waste material by solvent extraction (SX). Moreover, a new technique was developed for the selective separation of Sc and Fe from real RM leachates. The presence of high Fe content (∼38%) in RM makes it difficult to recover Sc because of the similarity of their physicochemical properties. Pyrometallurgical and hydrometallurgical methods were applied to remove the Fe prior to SX. Two protocols based on organophosphorus compounds (OPCs) were proposed, and the main extractants were evaluated: bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP). The results showed that SX using diethyl ether and tri-n-octylamine (N235) was efficient in extracting Fe(III) from the HCl leachate as HFeC14. Over 97% of Sc was extracted by D2EHPA extractant under the following conditions; 0.05 mol/L of D2EHPA concentration, A/O phase ratio of 3:1, pH 0-1, 10 min of shaking time, and a temperature of 25 °C. Sc(OH)3 as a precipitate was efficiently obtained by stripping from the D2EHPA organic phase by 2.5 mol/L of NaOH with a stripping efficiency of 95%. In the TBP system, 99% of Sc was extracted under the following conditions: 12.5% vol of TBP, an A/O phase ratio of 3:1, 10 min of shaking time, and a temperature of 25 °C. The Sc contained in the TBP organic phase could be efficiently stripped by 1 mol/L of HCl with a stripping efficiency of 92.85%.


Assuntos
Compostos Férricos , Escândio , Óxido de Alumínio , Resíduos
2.
Bioresour Technol ; 306: 123095, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32172086

RESUMO

This study developed a unique system by combining the novel vertical flow (NVF) using expanded clay (ExC) and free flow surface constructed wetland (FWS) for dormitory sewage purification and reuse. The NVF tank consisted of filter layers of ExC, sandy soil, sand, and gravel. The FWS consisted of sandy soil substrate and was installed after the NVF. Colocasia esculenta and Dracaena sanderiana was planted in NVF and FWS, respectively. The treatment system was operated and tested for more than 21 weeks by increasing the hydraulic loading rate (HLR) from 0.02 m/d to 0.12 m/d. The results demonstrated that effluents in the system changed proportionally to the HLRs, except for nitrate nitrogen. Furthermore, the maximum removal efficiencies for TSS, BOD5, NH4-N, and Tcol were 76 ± 13%, 74 ± 11%, 90 ± 3%, and 59 ± 18% (0.37 ± 0.19 log10MPN/100 mL), respectively. At HLRs of 0.04-0.06 m/d, the treatment system satisfied the limits of agriculture irrigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA