Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541956

RESUMO

AIMS: Various epidemiology studies have reported the emergence of Staphylococcus aureus and its methicillin resistance strain causing global health concerns, especially during and post-COVID-19 pandemic. This pathogen presents as a co-infection in patients with COVID-19. In addition, certain virulence factors and resistance to ß-lactam antibiotics, including cefotaxime, have been identified. We aimed to investigate the antibacterial activity of Lagerstreomia speciosa, a medicinal plant with antidiabetic activity, against S. aureus, including the strain resistant to methicillin. Furthermore, we examined whether the extract and one of its bioactive compounds, corosolic acid, can enhance the therapeutic effect of cefotaxime on antibiotic-resistant S. aureus. METHODS AND RESULTS: The minimum inhibitory concentration of each substance was determined using the standard broth microdilution test following the checkerboard dilution. The type of interactions, synergistic, additivity, indifference, or antagonism, were determined using isobolograms analysis and the dose reduction index (DRI). The evaluation of synergy and bactericidal activity of the natural products in combination with cefotaxime was performed using the time-kill kinetic assay. Corosolic acid, L. speciosa leaves extract, and bark extract alone showed antibacterial activity against all tested S. aureus ATCC 33591, S. aureus ATCC 29213, S. aureus ATCC 25923, and clinical isolated S. aureus. Corosolic acid enhanced the antibacterial activity of cefotaxime, showing a synergistic effect and greater DRI of cefotaxime against all tested S. aureus strains. Time-kill kinetic assay showed that corosolic acid has a more profound effect than L. speciosa extracts to potentiate the bactericidal activity of cefotaxime. Whereas L. speciosa leaves and bark extract showed some inhibitory effect on the growth of S. aureus after a single administration. CONCLUSIONS: Lagerstreomia speciosa leaves and bark extract and its active compound, corosolic acid, could be used as a potential anti-Staphylococcus aureus treatment to enhance the therapeutic use of cefotaxime.


Assuntos
COVID-19 , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Cefotaxima/farmacologia , Pandemias , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
2.
Biomed Pharmacother ; 144: 112138, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34750026

RESUMO

Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA